{ "cells": [ { "cell_type": "markdown", "id": "511dff2c", "metadata": {}, "source": [ "# Leverage by Borrowing Cash\n", "\n", "The *standard mean-variance (Markowitz) portfolio selection model* determines an optimal investment portfolio that balances risk and expected return. In this notebook, we maximize the portfolio's expected return while constraining the admissible variance (risk) to a given maximum level. Please refer to the [annotated list of references](../literature.rst#portfolio-optimization) for more background information on portfolio optimization.\n", "\n", "To this basic model, we add *leverage*. Leverage means borrowing capital from a third party to buy more assets (and paying interest on the borrowed capital). This magnifies both the potential upside and downside." ] }, { "cell_type": "code", "execution_count": 1, "id": "2bd010ba", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:04:33.265046Z", "iopub.status.busy": "2025-01-31T10:04:33.264815Z", "iopub.status.idle": "2025-01-31T10:04:34.043695Z", "shell.execute_reply": "2025-01-31T10:04:34.042954Z" }, "nbsphinx": "hidden" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: numpy in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (2.2.2)\r\n", "Requirement already satisfied: scipy in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (1.15.1)\r\n", "Requirement already satisfied: gurobipy in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (11.0.3)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: pandas in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (2.2.3)\r\n", "Requirement already satisfied: matplotlib in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (3.10.0)\r\n", "Requirement already satisfied: python-dateutil>=2.8.2 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from pandas) (2.9.0.post0)\r\n", "Requirement already satisfied: pytz>=2020.1 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from pandas) (2025.1)\r\n", "Requirement already satisfied: tzdata>=2022.7 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from pandas) (2025.1)\r\n", "Requirement already satisfied: contourpy>=1.0.1 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from matplotlib) (1.3.1)\r\n", "Requirement already satisfied: cycler>=0.10 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from matplotlib) (0.12.1)\r\n", "Requirement already satisfied: fonttools>=4.22.0 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from matplotlib) (4.55.8)\r\n", "Requirement already satisfied: kiwisolver>=1.3.1 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from matplotlib) (1.4.8)\r\n", "Requirement already satisfied: packaging>=20.0 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from matplotlib) (24.2)\r\n", "Requirement already satisfied: pillow>=8 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from matplotlib) (11.1.0)\r\n", "Requirement already satisfied: pyparsing>=2.3.1 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from matplotlib) (3.2.1)\r\n", "Requirement already satisfied: six>=1.5 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ "# Install dependencies\n", "%pip install numpy scipy gurobipy pandas matplotlib" ] }, { "cell_type": "code", "execution_count": 2, "id": "4fdd601f", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:04:34.045752Z", "iopub.status.busy": "2025-01-31T10:04:34.045560Z", "iopub.status.idle": "2025-01-31T10:04:34.663728Z", "shell.execute_reply": "2025-01-31T10:04:34.663037Z" } }, "outputs": [], "source": [ "import gurobipy as gp\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 3, "id": "70bcc356", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:04:34.665831Z", "iopub.status.busy": "2025-01-31T10:04:34.665571Z", "iopub.status.idle": "2025-01-31T10:04:34.673938Z", "shell.execute_reply": "2025-01-31T10:04:34.673366Z" }, "nbsphinx": "hidden" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Set parameter WLSAccessID\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Set parameter WLSSecret\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Set parameter LicenseID to value 2443533\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "WLS license 2443533 - registered to Gurobi GmbH\n" ] } ], "source": [ "# Hidden cell to avoid licensing messages\n", "# when docs are generated.\n", "with gp.Model():\n", " pass" ] }, { "cell_type": "markdown", "id": "38937ca0", "metadata": {}, "source": [ "## Input Data\n", "\n", "The following input data is used within the model:\n", "\n", "- $S$: set of stocks\n", "- $\\mu$: vector of expected returns\n", "- $\\Sigma$: PSD variance-covariance matrix\n", " - $\\sigma_{ij}$ covariance between returns of assets $i$ and $j$\n", " - $\\sigma_{ii}$ variance of return of asset $i$" ] }, { "cell_type": "code", "execution_count": 4, "id": "26df3e61", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:04:34.675771Z", "iopub.status.busy": "2025-01-31T10:04:34.675596Z", "iopub.status.idle": "2025-01-31T10:04:34.681425Z", "shell.execute_reply": "2025-01-31T10:04:34.680823Z" } }, "outputs": [], "source": [ "# Import some example data set\n", "Sigma = pd.read_pickle(\"sigma.pkl\")\n", "mu = pd.read_pickle(\"mu.pkl\")" ] }, { "cell_type": "markdown", "id": "ac692b61", "metadata": {}, "source": [ "## Formulation\n", "Mathematically, this results in a convex quadratically constrained optimization problem.\n", "\n", "### Model Parameters\n", "\n", "The following parameters are used within the model:\n", "\n", "- $\\bar\\sigma^2$: maximal admissible variance for the portfolio return\n", "- $c_\\text{rf}$: interest on the risk-free asset. For simplicity, we assume the same interest rate for lending and borrowing.\n", "- $\\ell_\\text{rf}$: maximal short on risk-free asset\n", "- $u_\\text{rf}$: maximal investment in risk-free asset" ] }, { "cell_type": "code", "execution_count": 5, "id": "91c0f177", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:04:34.683373Z", "iopub.status.busy": "2025-01-31T10:04:34.683052Z", "iopub.status.idle": "2025-01-31T10:04:34.685833Z", "shell.execute_reply": "2025-01-31T10:04:34.685439Z" } }, "outputs": [], "source": [ "# Values for the model parameters:\n", "V = 4.0 # Maximal admissible variance (sigma^2)\n", "c_rf = 2 / 52 # interest rate on risk-free asset\n", "l_rf = -0.3 # maximal borrowing of risk-free asset\n", "u_rf = 1 # maximal investment in risk-free asset" ] }, { "cell_type": "markdown", "id": "1b4eb1c9", "metadata": {}, "source": [ "### Decision Variables\n", "We require two types of decision variables:\n", "\n", "1. The proportions of capital invested among the considered stocks. The corresponding vector of positions is denoted by $x$ with its component $x_i$ denoting the proportion of capital invested in stock $i$.\n", "\n", "2. The proportion $x_\\text{rf}$ invested in the risk-free asset. This may be positive or negative. If positive, we gain a risk-free return; if negative, we pay interest on the borrowed amount.\n", "\n", "\n", "### Variable Bounds\n", "\n", "Each position must be nonnegative:\n", "\n", "$$ x_i\\geq 0 \\;, \\, i \\in S$$\n", "\n", "The risk-free position must be within its bounds:\n", "\n", "$$ \\ell_\\text{rf} \\leq x_\\text{rf} \\leq u_\\text{rf} $$\n", "\n", "Setting the upper bound $u_\\text{rf}=1$ means the portfolio is allowed to be fully invested in the risk-free asset." ] }, { "cell_type": "code", "execution_count": 6, "id": "100bd681", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:04:34.687511Z", "iopub.status.busy": "2025-01-31T10:04:34.687341Z", "iopub.status.idle": "2025-01-31T10:04:34.692071Z", "shell.execute_reply": "2025-01-31T10:04:34.691495Z" } }, "outputs": [], "source": [ "%%capture\n", "# Create an empty optimization model\n", "m = gp.Model()\n", "\n", "# Add variables: x[i] denotes the proportion invested in stock i\n", "x = m.addMVar(len(mu), name=\"x\")\n", "\n", "# Risk-free allocation\n", "x_rf = m.addVar(lb=l_rf, ub=u_rf, name=\"x_rf\")" ] }, { "cell_type": "markdown", "id": "d7272afa", "metadata": {}, "source": [ "### Constraints\n", "\n", "The budget constraint ensures that all capital (both initial and borrowed) is invested:\n", "\n", "$$\\sum_{i \\in S} x_i + x_\\text{rf} = 1$$\n", "\n", "The estimated risk must not exceed a prespecified maximal admissible level of variance $\\bar\\sigma^2$:\n", "\n", "$$x^\\top \\Sigma x \\leq \\bar\\sigma^2$$" ] }, { "cell_type": "code", "execution_count": 7, "id": "2c036aac", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:04:34.693817Z", "iopub.status.busy": "2025-01-31T10:04:34.693630Z", "iopub.status.idle": "2025-01-31T10:04:34.861189Z", "shell.execute_reply": "2025-01-31T10:04:34.860624Z" } }, "outputs": [], "source": [ "%%capture\n", "# Budget constraint: all investments sum up to 1\n", "m.addConstr(x.sum() + x_rf == 1, name=\"Budget_Constraint\")\n", "\n", "# Upper bound on variance\n", "risk_constr = m.addConstr(x @ Sigma.to_numpy() @ x <= V, name=\"Variance\")" ] }, { "cell_type": "markdown", "id": "2dd9fccd", "metadata": {}, "source": [ "### Objective Function\n", "\n", "The objective is to maximize the expected return of the portfolio. We need to account for risk-free returns and costs for borrowing cash:\n", "\\begin{equation*}\n", "\\max_x \\underbrace{c_\\text{rf} x_\\text{rf}}_{\\substack{\\text{cost for borrowing}\\\\\\text{or risk-free return}}} + \\underbrace{\\mu^\\top x}_\\text{expected return from stocks}\n", "\\end{equation*}" ] }, { "cell_type": "code", "execution_count": 8, "id": "83066763", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:04:34.863823Z", "iopub.status.busy": "2025-01-31T10:04:34.863523Z", "iopub.status.idle": "2025-01-31T10:04:34.868447Z", "shell.execute_reply": "2025-01-31T10:04:34.867914Z" } }, "outputs": [], "source": [ "m.setObjective(c_rf * x_rf + mu.to_numpy() @ x, gp.GRB.MAXIMIZE)" ] }, { "cell_type": "markdown", "id": "8257be31", "metadata": {}, "source": [ "We now solve the optimization problem:" ] }, { "cell_type": "code", "execution_count": 9, "id": "7935d52d", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:04:34.871386Z", "iopub.status.busy": "2025-01-31T10:04:34.870629Z", "iopub.status.idle": "2025-01-31T10:04:35.131845Z", "shell.execute_reply": "2025-01-31T10:04:35.131233Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gurobi Optimizer version 11.0.3 build v11.0.3rc0 (linux64 - \"Ubuntu 24.04.1 LTS\")\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "CPU model: AMD EPYC 7763 64-Core Processor, instruction set [SSE2|AVX|AVX2]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Thread count: 1 physical cores, 2 logical processors, using up to 2 threads\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "WLS license 2443533 - registered to Gurobi GmbH\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Optimize a model with 1 rows, 463 columns and 463 nonzeros\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Model fingerprint: 0xc5359fbf\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Model has 1 quadratic constraint\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Coefficient statistics:\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Matrix range [1e+00, 1e+00]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " QMatrix range [3e-03, 1e+02]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Objective range [4e-02, 6e-01]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Bounds range [3e-01, 1e+00]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " RHS range [1e+00, 1e+00]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " QRHS range [4e+00, 4e+00]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Presolve time: 0.04s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Presolved: 464 rows, 926 columns, 107879 nonzeros\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Presolved model has 1 second-order cone constraint\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Ordering time: 0.01s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Barrier statistics:\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " AA' NZ : 1.074e+05\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Factor NZ : 1.079e+05 (roughly 1 MB of memory)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Factor Ops : 3.341e+07 (less than 1 second per iteration)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Threads : 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Objective Residual\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Iter Primal Dual Primal Dual Compl Time\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 0 1.36004448e+01 1.52173653e-01 5.78e+01 6.79e-01 4.09e-02 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 1 1.85351518e+00 1.75506108e+00 6.76e+00 7.47e-07 6.08e-03 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 2 5.26444573e-01 9.73208598e-01 1.18e+00 1.48e-07 1.50e-03 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 3 2.58180913e-01 5.35781906e-01 1.30e-06 1.75e-08 2.99e-04 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 4 2.74073099e-01 4.36667485e-01 1.43e-12 1.15e-09 1.75e-04 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 5 3.46759821e-01 3.86258876e-01 2.22e-15 2.28e-10 4.26e-05 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 6 3.60280539e-01 3.63495642e-01 1.05e-15 2.37e-11 3.46e-06 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 7 3.61562696e-01 3.61702796e-01 6.49e-15 9.30e-13 1.51e-07 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 8 3.61658821e-01 3.61673013e-01 7.21e-13 2.39e-14 1.53e-08 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 9 3.61665753e-01 3.61665955e-01 6.12e-13 5.33e-15 2.18e-10 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Barrier solved model in 9 iterations and 0.25 seconds (0.57 work units)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Optimal objective 3.61665753e-01\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "m.optimize()" ] }, { "cell_type": "markdown", "id": "efa095ce", "metadata": {}, "source": [ "Display basic solution data for all non-negligible positions; for clarity we've rounded all solution quantities to five digits." ] }, { "cell_type": "code", "execution_count": 10, "id": "e35695e4", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:04:35.133808Z", "iopub.status.busy": "2025-01-31T10:04:35.133634Z", "iopub.status.idle": "2025-01-31T10:04:35.148785Z", "shell.execute_reply": "2025-01-31T10:04:35.148205Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Expected return: 0.361666\n", "Variance: 3.999999\n", "Solution time: 0.25 seconds\n", "\n", "Total investment: 1.180790\n", "Risk-free allocation: -0.180793\n", "Number of positions: 31\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
x
LLY0.234378
PGR0.130469
KDP0.109984
TMUS0.061071
NVDA0.059577
KR0.059146
DPZ0.058659
TTWO0.052455
WM0.050070
NOC0.049313
ODFL0.039862
ORLY0.035956
AVGO0.034829
WST0.029040
MSFT0.027461
ED0.018846
MKTX0.018722
AZO0.018125
MNST0.015005
CLX0.014768
META0.013696
HRL0.010052
NFLX0.009693
WMT0.008259
UNH0.007706
DXCM0.004475
XEL0.004328
CBOE0.003246
MOH0.000780
WEC0.000628
CME0.000189
\n", "
" ], "text/plain": [ " x\n", "LLY 0.234378\n", "PGR 0.130469\n", "KDP 0.109984\n", "TMUS 0.061071\n", "NVDA 0.059577\n", "KR 0.059146\n", "DPZ 0.058659\n", "TTWO 0.052455\n", "WM 0.050070\n", "NOC 0.049313\n", "ODFL 0.039862\n", "ORLY 0.035956\n", "AVGO 0.034829\n", "WST 0.029040\n", "MSFT 0.027461\n", "ED 0.018846\n", "MKTX 0.018722\n", "AZO 0.018125\n", "MNST 0.015005\n", "CLX 0.014768\n", "META 0.013696\n", "HRL 0.010052\n", "NFLX 0.009693\n", "WMT 0.008259\n", "UNH 0.007706\n", "DXCM 0.004475\n", "XEL 0.004328\n", "CBOE 0.003246\n", "MOH 0.000780\n", "WEC 0.000628\n", "CME 0.000189" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "print(f\"Expected return: {m.ObjVal:.6f}\")\n", "print(f\"Variance: {x.X @ Sigma @ x.X:.6f}\")\n", "print(f\"Solution time: {m.Runtime:.2f} seconds\\n\")\n", "\n", "print(f\"Total investment: {x.X[x.X>1e-5].sum():.6f}\")\n", "print(f\"Risk-free allocation: {x_rf.X:.6f}\")\n", "print(f\"Number of positions: {np.count_nonzero(x.X[abs(x.X)>1e-5])}\")\n", "\n", "# Print all assets with a non-negligible position\n", "df = pd.DataFrame(\n", " index=mu.index,\n", " data={\n", " \"x\": x.X,\n", " },\n", ").round(6)\n", "df[(abs(df[\"x\"]) > 1e-5)].sort_values(\"x\", ascending=False)" ] }, { "cell_type": "markdown", "id": "49467728", "metadata": {}, "source": [ "## Comparison with the unconstrained portfolio without leverage\n", "\n", "We can also compute the portfolio without leverage and compare the resulting portfolios." ] }, { "cell_type": "code", "execution_count": 11, "id": "7648fb9b", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:04:35.150658Z", "iopub.status.busy": "2025-01-31T10:04:35.150483Z", "iopub.status.idle": "2025-01-31T10:04:35.586850Z", "shell.execute_reply": "2025-01-31T10:04:35.586173Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAnXdJREFUeJzs3XdYFUf78PHvEaQICBaUIlJUsNcUO6AYMGqisYsFsAd7iTEmakxiS9HYE0UwiYqNGGPsCooNNYr6KCr2EoixgShFcN8/fNmfxwNIV+H+XNdeyZmdnZ1dTxlmZ+bWKIqiIIQQQghRRJR41RUQQgghhMhP0rgRQgghRJEijRshhBBCFCnSuBFCCCFEkSKNGyGEEEIUKdK4EUIIIUSRIo0bIYQQQhQp0rgRQgghRJEijRshhBBCFCnSuHmFNBoNU6dOzdWxDg4O+Pj45Gt9ihO5f/krISGBAQMGYGVlhUajYdSoUTk6/sXPQlBQEBqNhqtXr+ZrPQtCTj7HGo2GYcOGFWyF8oGPjw8ODg4FUvbVq1fRaDQEBQVlO+93331XIHXJTzm5LlHwpHGTR+lfwhqNhv379+vsVxQFOzs7NBoN7du3fwU1fP2FhISg0WhYtmxZpnl27tyJRqNh3rx5hVgz8bwtW7Zk+iM+ffp0goKCGDp0KL/++it9+vQp3Mq9Rg4ePMjUqVN58ODBq67KGyOr99arNH36dDZu3PiqqyFyQf9VV6CoMDIyYtWqVTRv3lwrfe/evdy8eRNDQ0OdYxITE9HXz90/wfnz5ylRomi0Tdu1a4e5uTmrVq1iwIABGeZZtWoVenp69OjRI1/OWZTuX2HZsmULCxcuzPBHaM+ePTRu3JgpU6bky7n69OlDjx49MvzcvG5e/BwfPHiQL7/8Eh8fHywsLF5dxV5T9vb2JCYmUrJkSTUtq/fWqzR9+nS6dOlCx44dX3VVRA7Jt3s+ef/991m3bh2pqala6atWraJRo0ZYWVnpHGNkZJTrxo2hoaHWl8ObzNDQkC5durB3717++ecfnf1JSUn8/vvvtGnThgoVKuT6PIqikJiYqJ6zqNy/gvbo0aOX5rl9+3a+/pDr6elhZGSERqPJtzILSl4+x8WRRqPByMgIPT29V12VYiUpKYmnT5++6moUGmnc5JOePXty9+5ddu7cqaalpKSwfv16evXqleExLz6rnzp1KhqNhosXL6p/9Zmbm+Pr68vjx4+1jn1xzEj647H9+/czYsQILC0tsbCwYPDgwaSkpPDgwQP69u1LmTJlKFOmDJ988gnPB4QPCwtDo9EQFhamdZ6MniP7+PhgamrK9evXad++Paamptja2rJw4UIATp8+TatWrTAxMcHe3p5Vq1a99P717t2bp0+fEhwcrLPvr7/+Ii4uDm9vbwACAwNp1aoVFSpUwNDQkJo1a7J48WKd4xwcHGjfvj3bt2/nrbfewtjYmJ9++inD+3fv3j3GjRtHnTp1MDU1pXTp0rRt25aTJ09qlZl+n9auXcs333xDpUqVMDIyonXr1ly8eFGnDhEREbz//vuUKVMGExMT6taty48//qiV59y5c3Tp0oWyZctiZGTEW2+9xaZNm156z54fjzBnzhzs7e0xNjbG1dWV//3vfzr59+zZQ4sWLTAxMcHCwoIPP/yQqKgorTzp78GzZ8/Sq1cvypQpQ/PmzfHx8VH/fdMfw6a/XzQaDVeuXOGvv/5S09PHyty+fZv+/ftTsWJFjIyMqFevHitWrHjptWU25mbRokXUqlULQ0NDbGxs8Pf313n8Ex0dTefOnbGyssLIyIhKlSrRo0cP4uLiMj3fvHnz0NPT0yrr+++/R6PRMGbMGDUtLS0NMzMzJkyYoKY9/zmeOnUq48ePB8DR0VHnfqTbuHEjtWvXxtDQkFq1arFt27aX3pOUlBQmT55Mo0aNMDc3x8TEhBYtWhAaGqqV7/n3xc8//0yVKlUwNDTk7bff5ujRozrlptfFyMiI2rVr8/vvv7+0LgBjxoyhXLlyWt8jw4cP13l8/O+//6LRaNTP6IvfKZm9t16UnWvJzns8s/FE6e/9dBqNhkePHrFixQq1TrkZp/eyz/exY8fQaDQZfi62b9+ORqNh8+bNatqtW7fw8/OjYsWK6vtn+fLlWselfy6Dg4P5/PPPsbW1pVSpUsTHx2f7uw7g2rVrfPDBB5iYmFChQgVGjx6t1unF34qIiAi8vLwwNzenVKlSuLq6cuDAgRzfr/wif27kEwcHB5o0acLq1atp27YtAFu3biUuLo4ePXrkaKxIt27dcHR0ZMaMGRw/fpxly5ZRoUIFZs2a9dJjhw8fjpWVFV9++SWHDx/m559/xsLCgoMHD1K5cmWmT5/Oli1b+Pbbb6lduzZ9+/bN1fWmpaXRtm1bWrZsyezZs1m5ciXDhg3DxMSESZMm4e3tzUcffcSSJUvo27cvTZo0wdHRMdPyWrZsSaVKlVi1apXWjwk86/0qVaqU2jW8ePFiatWqxQcffIC+vj5//vknH3/8MU+fPsXf31/r2PPnz9OzZ08GDx7MwIEDcXFxyfD8ly9fZuPGjXTt2hVHR0f+/fdffvrpJ1xdXTl79iw2NjZa+WfOnEmJEiUYN24ccXFxzJ49G29vbyIiItQ8O3fupH379lhbWzNy5EisrKyIiopi8+bNjBw5EoAzZ87QrFkzbG1t+fTTTzExMWHt2rV07NiRDRs20KlTp5f+W/zyyy88fPgQf39/kpKS+PHHH2nVqhWnT5+mYsWKAOzatYu2bdvi5OTE1KlTSUxMZP78+TRr1ozjx4/rfNl37dqVatWqMX36dBRFoUGDBvzzzz/s3LmTX3/9Vc1Xo0YNfv31V0aPHk2lSpUYO3YsAJaWliQmJuLm5sbFixcZNmwYjo6OrFu3Dh8fHx48eKDeg+yaOnUqX375JR4eHgwdOpTz58+zePFijh49yoEDByhZsiQpKSl4enqSnJysfhZu3brF5s2befDgAebm5hmW3aJFC54+fcr+/fvVsXHh4eGUKFGC8PBwNd+JEydISEigZcuWGZbz0UcfceHCBVavXs2cOXMoX768ej/S7d+/n5CQED7++GPMzMyYN28enTt35vr165QrVy7T64+Pj2fZsmX07NmTgQMH8vDhQwICAvD09OTIkSPUr19fK/+qVat4+PAhgwcPRqPRMHv2bD766CMuX76s9lru2LGDzp07U7NmTWbMmMHdu3fx9fWlUqVKL/33aNGiBXPmzOHMmTPUrl1b556NGDFCTQMyvWeDBw/O8L2V02vJ6Xv8ZX799VcGDBjAO++8w6BBgwCoUqVKjsrIzuf7rbfewsnJibVr19KvXz+t49esWUOZMmXw9PQEnjUUGzdurA5Mt7S0ZOvWrfTv35/4+HidgfxfffUVBgYGjBs3juTkZAwMDDh79my2vusePXpEq1atiImJUb+/Vq1apdOYhmeNyrZt29KoUSOmTJlCiRIl1D9Cw8PDeeedd3J03/KFIvIkMDBQAZSjR48qCxYsUMzMzJTHjx8riqIoXbt2Vdzd3RVFURR7e3ulXbt2WscCypQpU9TXU6ZMUQDFz89PK1+nTp2UcuXKaaXZ29sr/fr106mHp6en8vTpUzW9SZMmikajUYYMGaKmpaamKpUqVVJcXV3VtNDQUAVQQkNDtc5z5coVBVACAwPVtH79+imAMn36dDXt/v37irGxsaLRaJTg4GA1/dy5czrXmZnx48crgHL+/Hk1LS4uTjEyMlJ69uyppqXf3+d5enoqTk5OWmn29vYKoGzbtk0n/4v3LykpSUlLS9O5dkNDQ2XatGlqWvp9qlGjhpKcnKym//jjjwqgnD59WlGUZ/fY0dFRsbe3V+7fv69V7vP/Pq1bt1bq1KmjJCUlae1v2rSpUq1aNZ16v1g/QDE2NlZu3ryppkdERCiAMnr0aDWtfv36SoUKFZS7d++qaSdPnlRKlCih9O3bV01Lfw8+f7/T+fv7K5l9ZWT0/p47d64CKL/99pualpKSojRp0kQxNTVV4uPj1fQX3yPp7+crV64oiqIot2/fVgwMDJT33ntP699pwYIFCqAsX75cURRFOXHihAIo69aty7CemUlLS1NKly6tfPLJJ4qiPPs3KFeunNK1a1dFT09PefjwoaIoivLDDz8oJUqU0Po3fbHu3377rVbdnwcoBgYGysWLF9W0kydPKoAyf/78LOuYmpqq9Z5TlGefu4oVK2p9Z6S/L8qVK6fcu3dPTf/jjz8UQPnzzz/VtPr16yvW1tbKgwcP1LQdO3YogGJvb59lfW7fvq0AyqJFixRFUZQHDx4oJUqUULp27apUrFhRzTdixAilbNmy6vs+o++UzN5bOb2W7LzH+/Xrl+G1pb/3n2diYqL1PZGVjK4ru5/viRMnKiVLltS6xuTkZMXCwkLr37Z///6KtbW1cufOHa1z9+jRQzE3N1e/G9O/p5ycnHS+L7P7Xff9998rgLJx40Y1LTExUalevbrWb8XTp0+VatWq6fz2PH78WHF0dFTatGnz0ntXEOSxVD7q1q0biYmJbN68mYcPH7J58+ZMH0llZciQIVqvW7Rowd27d4mPj3/psf3799fqWn333XdRFIX+/furaXp6erz11ltcvnw5x3V73vODfy0sLHBxccHExIRu3bqp6S4uLlhYWGTrXL179wbQeoy1YcMGkpKS1EdSAMbGxur/x8XFcefOHVxdXbl8+bLOowdHR0f1r56sGBoaqgOM09LSuHv3Lqampri4uHD8+HGd/L6+vhgYGKivW7RoAaBe54kTJ7hy5QqjRo3SGYuS/u9z79499uzZQ7du3Xj48CF37tzhzp073L17F09PT6Kjo7l169ZL696xY0dsbW3V1++88w7vvvsuW7ZsASAmJobIyEh8fHwoW7asmq9u3bq0adNGzfe8F9+DubFlyxasrKzo2bOnmlayZElGjBhBQkICe/fuzXZZu3btIiUlhVGjRmkNBB84cCClS5fmr7/+AlB7ZrZv367zKDcrJUqUoGnTpuzbtw+AqKgo7t69y6effoqiKBw6dAh41gtRu3btPI0v8vDw0OoBqFu3LqVLl37pZ0RPT099zz19+pR79+6RmprKW2+9leF7tHv37pQpU0Z9/eJ7NP190a9fP60erTZt2lCzZs2XXoelpSXVq1dX79mBAwfQ09Nj/Pjx/Pvvv0RHRwPP7lnz5s3zNH4qu9eSk/d4QcvJ57t79+48efKEkJAQ9fgdO3bw4MEDunfvDjwbM7hhwwY6dOiAoihqeXfu3MHT05O4uDid90G/fv20vi8h+99127Ztw9bWlg8++EBNMzIyYuDAgVrlRUZGEh0dTa9evbh7965ap0ePHtG6dWv27dv3Ssb6SOMmH1laWuLh4cGqVasICQkhLS2NLl265LicypUra71O/1Dfv38/x8emf2nZ2dnppGenvMwYGRlpdbWnl1mpUiWdL7Hsnqtu3brUrl2b1atXq2mrVq2ifPnyWg2UAwcO4OHhoT5Xt7S05LPPPgPIsHGTHU+fPmXOnDlUq1YNQ0NDypcvj6WlJadOncpwrMbL/o0uXboEoHbXZ+TixYsoisIXX3yBpaWl1pY+6+j27dsvrXu1atV00pydndVxHteuXQPI8JFcjRo11C+i52X3vmXl2rVrVKtWTWdWWo0aNbTqld2yQPcaDAwMcHJyUvc7OjoyZswYli1bpr5vFi5cmOV4m3QtWrTg77//JjExkfDwcKytrWnYsCH16tVTH63s379f/WHNrRffO/Ds/ZOdz8iKFSuoW7cuRkZGlCtXDktLS3VM2svO8+J7NP2eZfT+yezx7YtatGih3pvw8HDeeust3nrrLcqWLUt4eDjx8fGcPHky3+9ZZteSk/d4QcvJ57tevXpUr16dNWvWqMevWbOG8uXL06pVKwD+++8/Hjx4wM8//6xTnq+vr1Z56TL6HGf3u+7atWtUqVJF5/u8atWqWq/TG7H9+vXTqdeyZctITk7O1ucvv8mYm3zWq1cvBg4cSGxsLG3bts3VX3iZzSJQnhu4l9NjM0p/vrzM/qpKS0vL83lePFdWevfuzaeffsqxY8eoVKkSoaGhDB48WJ2NcunSJVq3bk316tX54YcfsLOzw8DAgC1btjBnzhydvxBe/KslM9OnT+eLL77Az8+Pr776irJly1KiRAlGjRqV4V8deb1OQC133LhxmfYuvfhFUliye99eR99//z0+Pj788ccf7NixgxEjRjBjxgwOHz6c5ViS5s2b8+TJEw4dOkR4eLj6g5z+A37u3Dn++++/PP9Q5/a989tvv+Hj40PHjh0ZP348FSpUQE9PjxkzZqiN6fw4T040b96cpUuXcvnyZfWeaTQamjdvTnh4ODY2Njx9+vSV3bOM5PS7Lrdy+vnu3r0733zzDXfu3MHMzIxNmzbRs2dP9bsvvbzevXvrjM1JV7duXa3XGX2Oc/pdl93r/Pbbb3XGfaUzNTXNcbl5JY2bfNapUycGDx7M4cOHtVrhr7v0v4RenHmSk7+u80PPnj2ZOHEiq1atwt7enrS0NK1HUn/++SfJycls2rRJ66+5jAa55cT69etxd3cnICBAK/3BgwfqoNCcSH/s8L///Q8PD48M8zg5OQHPHtVklic70v9yet6FCxfUAZT29vbAs8HVLzp37hzly5fHxMTkpefJ6WMFe3t7Tp06xdOnT7V6b86dO6dVr+yWBc+uIf2+wbMZRFeuXNG5f3Xq1KFOnTp8/vnnHDx4kGbNmrFkyRK+/vrrTM/xzjvvYGBgQHh4OOHh4eqsp5YtW7J06VJ2796tvs5KQU1fX79+PU5OTuqil+lyu7ZQ+j3N6P2T0XslI+mNlp07d3L06FE+/fRT4Nk9Wrx4MTY2NpiYmNCoUaMsy8nrPcvJe7xMmTIZLrCY0XddXuqV08939+7d+fLLL9mwYQMVK1YkPj5ea10vS0tLzMzMSEtLy9P3RXa/6+zt7Tl79iyKomjdhxdnhaZ/15UuXTpP9cpv8lgqn5mamrJ48WKmTp1Khw4dXnV1ss3e3h49PT31+Xm6RYsWFWo9KleuTIsWLVizZg2//fYbjo6ONG3aVN2f/hfc83+xxcXFERgYmKfz6unp6fwVuG7dumyNeclIw4YNcXR0ZO7cuTpfpOnnqVChAm5ubvz000/ExMTolPHff/9l61wbN27UqueRI0eIiIhQZ+1ZW1tTv359VqxYoVWX//3vf+zYsYP3338/W+dJ/3HI7sq777//PrGxsVqN/NTUVObPn4+pqSmurq7ZKgeejVMxMDBg3rx5Wv9OAQEBxMXF0a5dO+DZjKIX15qqU6cOJUqUIDk5OctzGBkZ8fbbb7N69WquX7+u1XOTmJjIvHnzqFKlCtbW1lmWk9P7lF0ZvfcjIiLU8UA59fz74vnHBjt37uTs2bPZKsPR0RFbW1vmzJnDkydPaNasGfDsnl26dIn169fTuHHjl64DlNd7lpP3eJUqVYiLi+PUqVNqWkxMTIZT4E1MTHJdp5x+vmvUqEGdOnVYs2YNa9aswdraWqshraenR+fOndmwYUOGSz1k9/siu991np6e3Lp1S2vaelJSEkuXLtXK16hRI6pUqcJ3331HQkJCruuV36TnpgBk1mX4OjM3N6dr167Mnz8fjUZDlSpV2Lx5c7bGfOS33r17M2jQIP755x8mTZqkte+9997DwMCADh06MHjwYBISEli6dCkVKlTI8Asku9q3b8+0adPw9fWladOmnD59mpUrV2r1EuREiRIlWLx4MR06dKB+/fr4+vpibW3NuXPnOHPmDNu3bwdg4cKFNG/enDp16jBw4ECcnJz4999/OXToEDdv3sxw7YkXVa1alebNmzN06FCSk5OZO3cu5cqV45NPPlHzfPvtt7Rt25YmTZrQv39/dZqsubl5tleFTf/re8SIEXh6er50xehBgwbx008/4ePjw99//42DgwPr16/nwIEDzJ07FzMzs2ydF5791Tpx4kS+/PJLvLy8+OCDDzh//jyLFi3i7bffVgej79mzh2HDhtG1a1ecnZ1JTU3l119/VX8YXqZFixbMnDkTc3Nz6tSpAzz7kXJxceH8+fPZWuck/T5NmjSJHj16ULJkSTp06JCt3rGstG/fnpCQEDp16kS7du24cuUKS5YsoWbNmhn+qGTHjBkzaNeuHc2bN8fPz4979+4xf/58atWqle0yW7RoQXBwMHXq1FF7gBs2bIiJiQkXLlzI1qSKnL63MpLd93iPHj2YMGECnTp1YsSIETx+/JjFixfj7OysMyC3UaNG7Nq1ix9++AEbGxscHR159913s12nnH6+u3fvzuTJkzEyMqJ///4649VmzpxJaGgo7777LgMHDqRmzZrcu3eP48ePs2vXLu7du/fSOmX3u27w4MEsWLCAnj17MnLkSKytrVm5ciVGRkbA//VqlShRgmXLltG2bVtq1aqFr68vtra23Lp1i9DQUEqXLs2ff/6Z7XuWbwp3clbR8/xU8KzkZCr4f//9l+E5np9amtlU8BfrkVmZ/fr1U0xMTLTS/vvvP6Vz585KqVKllDJlyiiDBw9W/ve//2U4FfzFYxVFUVxdXZVatWpl69qzcu/ePcXQ0FABlLNnz+rs37Rpk1K3bl3FyMhIcXBwUGbNmqUsX748w3uU2Xkzmgo+duxYxdraWjE2NlaaNWumHDp0SHF1dc1wyvyLU40zmgaqKIqyf/9+pU2bNoqZmZliYmKi1K1bV2fK76VLl5S+ffsqVlZWSsmSJRVbW1ulffv2yvr167O8T+nn/Pbbb5Xvv/9esbOzUwwNDZUWLVooJ0+e1Mm/a9cupVmzZoqxsbFSunRppUOHDjr3N7P3i6I8m4o8fPhwxdLSUtFoNFrTZjO71//++6/i6+urlC9fXjEwMFDq1Kmjc48U5eVTwdMtWLBAqV69ulKyZEmlYsWKytChQ7WmZV++fFnx8/NTqlSpohgZGSlly5ZV3N3dlV27dmVyF7X99ddfCqC0bdtWK33AgAEKoAQEBLy07oqiKF999ZVia2urlChRQus6AMXf31+njBffjxl5+vSpMn36dMXe3l4xNDRUGjRooGzevFlnavPz74vs1HXDhg1KjRo1FENDQ6VmzZpKSEhIptOlM7Jw4UIFUIYOHaqV7uHhoQDK7t27tdIz+qxk9t7K6bVk5z2uKM+mu9euXVsxMDBQXFxclN9++y3DqeDnzp1TWrZsqRgbGytAlv9GmX0H5OTzHR0drQAKoOzfvz/D8/z777+Kv7+/Ymdnp5QsWVKxsrJSWrdurfz8889qnsy+pxQl+991ivLs89SuXTvF2NhYsbS0VMaOHats2LBBAZTDhw9r5T1x4oTy0UcfKeXKlVMMDQ0Ve3t7pVu3bjr//oVFoyj5OLpMCFForl69iqOjI99++y3jxo171dURQhQDc+fOZfTo0dy8eVNrCYrXjYy5EUIIIYSO9Fh86ZKSkvjpp5+oVq3aa92wARlzI4QQQogMfPTRR1SuXJn69esTFxfHb7/9xrlz51i5cuWrrtpLSeNGCCGEEDo8PT1ZtmwZK1euJC0tjZo1axIcHKyumvw6kzE3QgghhChSZMyNEEIIIYoUadwIIYQQokgpdmNunj59yj///IOZmVmBLZMuhBBCiPylKAoPHz7ExsZGZ4HDFxW7xs0///yjEyFbCCGEEG+GGzduZBkEF15x48bHx4cHDx6wceNGnX0ODg6MGjWKUaNGAc8CAdavX59ly5ZpLef99OlTmjdvjo2NDevXr3/pOdOXfL9x4walS5fOl+sQQgghRMGKj4/Hzs4uW6Fb3pieG2dnZ2bOnMnw4cNxd3dXg9d9//33XL58WSu4V1bSH0WVLl1aGjdCCCHEGyY7Q0remMYNwPDhw9m4cSMDBw5k8+bNnDt3jsmTJ7NmzRqtUO3ZcaWuA2YveWYnhBBCiOxzunznVVcBeMMaNxqNhsDAQOrWrcvSpUsJCAigR48efPDBB6+6akIIIYR4TbxRjRsAe3t75s6dy4ABA6hUqRI7duzIMn9ycjLJycnq6/j4+IKuohBCCCFeoTeucQPg6+vLF198wfDhw186bmbGjBl8+eWXOulNk13QlHgjL18IIYTIlYRb4a+6CoXijR10oq+vj77+yxsnEydOJC4uTt1u3LhRCLUTQgghxKtS5LsuDA0NMTQ01EmPOb9dZksJIYQQRdArb9zExcURGRmplVauXDkAbt26pbPP3t6eMmXKFFLthBBCCPGmeeWNm7CwMBo0aKCV1r9/fwC+++47vvvuO619v/76K7179y60+gkhhBDizaJRFEV51ZUoTPHx8ZibmxMXFyePpYQQQog3RE5+vwt8QLGPjw8ajQaNRoOBgQFVq1Zl2rRppKamAs8CYS1dupQmTZpQunRpTE1NqVWrFiNHjuTixYtqOVOnTlXL0dPTw87OjkGDBnHv3r2CvgQhhBBCvEEKZbaUl5cXMTExREdHM3bsWKZOncq3336Loij06tWLESNG8P7777Njxw7Onj1LQEAARkZGfP3111rl1KpVi5iYGK5fv05gYCDbtm1j6NChhXEJQgghhHhDFMqYG0NDQ6ysrAAYOnQov//+O5s2bcLR0ZHg4GD++OMPrVWGK1euTOPGjXnxiZm+vr5ajq2tLV27diUwMDBXdZLwC0IUPa/L0u9CiFfrlQwoNjY25u7du6xevRoXF5dMwydkFRzr6tWrbN++HQMDgyzPJSsUCyGEEMVLoTZuFEVh9+7dbN++neHDh7N582ZcXFy08owaNYply5YBYGFhwc2bN9V9p0+fxtTUlLS0NJKSkgD44YcfsjynrFAsRDFi20L93+KyEqsQQlehPJfZvHkzpqamGBkZ0bZtW7p3787UqVMzzDtp0iQiIyOZPHkyCQkJWvtcXFyIjIzk6NGjTJgwAU9PT4YPH57luWWFYiGEEKJ4KZTGjbu7O5GRkURHR5OYmMiKFSswMTGhWrVqnD9/XiuvpaUlVatWpUKFCjrlpM+2ql27NjNnzkRPTy/DXpnnGRoaUrp0aa1NCCGEEEVXoTyXMTExoWrVqjrpPXv2pFevXvzxxx98+OGHOS73888/p1WrVgwdOhQbG5scHSvhF4QQQoii6ZVOF+rRowddunShR48eTJs2jYiICK5evcrevXtZs2YNenp6WR7fpEkT6taty/Tp0wupxkIIIYR43b3Sxo1Go2HNmjXMnTuXLVu20Lp1a1xcXPDz88POzo79+/e/tIzRo0ezbNkyGUsjhBBCCEDCL7zq6gghhBAiG16r8AvwLARDx44dtdLWr1+PkZER33//vVaIhpIlS1KxYkXatGnD8uXLefr0qdZxDg4Oal4TExMaNmzIunXrCuMyhBBCCPEGeCWPpZYtW4a3tzeLFy9m7NixwP+FaLh69Spbt27F3d2dkSNH0r59ezUOVbpp06YRExPDiRMnePvtt+nevTsHDx58FZcihBBCiNdMoa9iN3v2bKZMmUJwcDCdOnVS058P0WBra0vDhg1p3LgxrVu3JigoiAEDBqh5zczMsLKywsrKioULF/Lbb7/x559/0rRp02zXQ8IvFA+yHL8QQhQ/hfrrPmHCBL766is2b96s1bDJTKtWrahXrx4hISGZ5tHX16dkyZKkpKRkuD85OZn4+HitTQghhBBFV6H13GzdupU//viD3bt306pVq2wfV716dU6dOpXhvpSUFL7//nvi4uIyLVPCLxRzzy3HL/KXhDcQQryuCq3npm7dujg4ODBlyhSdsApZURRFJ4DmhAkTMDU1pVSpUsyaNYuZM2fSrl27DI+X8AtCCCFE8VJojRtbW1vCwsK4desWXl5ePHz4MFvHRUVF4ejoqJU2fvx4IiMjuXnzJvfv32fChAmZHi/hF4QQQojipVCfy9jb27N3717c3d3x8vJi27ZtmJmZZZp/z549nD59mtGjR2ully9fPsNwDjkh4ReEEEKIoqnQpwvZ2dkRFhbG7du38fT0VAf4JicnExsby61btzh+/DjTp0/nww8/pH379vTt27ewqymEEEKIN9QrGVFbqVIlwsLCcHd3x9PTE2tra7Zt24a1tTX6+vqUKVOGevXqMW/ePPr160cJmbIthBBCiGyS8AtCCCGEeO0VaPiF9NAHmW1Tp07l6tWraDQa9PT0uHXrltbxMTEx6Ovro9FouHr1KgBhYWFoNBoePHigcz4HBwfmzp2rvt67dy+tWrWibNmylCpVimrVqtGvX79M17kRQgghRPGS48dSMTEx6v+vWbOGyZMnc/78eTXN1NSUO3eerQpra2vLL7/8wsSJE9X9K1aswNbWluvXr+e4smfPnsXLy4vhw4czb948jI2NiY6OZsOGDaSlpeWoLFmhOGuysq8QQog3VY5/3dPDHlhZWWFubo5Go9FKMzU1VfP269ePwMBAreMDAwPp169friq7Y8cOrKysmD17NrVr16ZKlSp4eXmxdOlSjI2Nc1WmEEIIIYqWAu26+OCDD7h//z779+8HYP/+/dy/f58OHTrkqjwrKytiYmLYt29fto+R8AtCCCFE8VKgs6VKlixJ7969Wb58Oc2bN2f58uX07t2bkiVL5qq8rl27sn37dlxdXbGyslIDa/bt2zfTwUUSfiGX3rCwBRIKQAghRLoCH3Ti5+fHunXriI2NZd26dfj5+eW6LD09PQIDA7l58yazZ8/G1taW6dOnU6tWLa2xQM+T8AtCCCFE8VLgjZs6depQvXp1evbsSY0aNahdu7ZOnvRel7i4OJ19Dx48wNzcXCvN1taWPn36sGDBAs6cOUNSUhJLlizJ8PwSfkEIIYQoXgrluYyfnx8ff/wxixcvznB/tWrVKFGiBH///Tf29vZq+uXLl4mLi8PZ2TnTssuUKYO1tTWPHj3KUZ0k/IIQQghRNBVK42bgwIF07doVCwuLDPebmZkxYMAAxo4di76+PnXq1OHGjRtMmDCBxo0b07RpUwB++uknIiMj6dSpE1WqVCEpKYlffvmFM2fOMH/+/MK4FCGEEEK85gqlcaOvr0/58uWzzPPjjz8yc+ZMJkyYwLVr17CysqJNmzZ88803aDQaAN555x3279/PkCFD+OeffzA1NaVWrVps3LgRV1fXwrgUIYQQQrzmJPyCEEIIIV57BRp+AcDHxweNRsPMmTO10jdu3IhGo2HDhg0Zhl5IV61aNcaMGQOAm5ubGrrB0NAQW1tbOnToQEhISKbnr169OoaGhsTGxuam+kIIIYQownL9WMrIyIhZs2YxePBgypQpo7Xvgw8+oFy5cqxYsYLPPvtMa9++ffu4ePEi/fv3V9MGDhzItGnTSE1N5ebNm/z+++/06NEDHx8ffv75Z63j9+/fT2JiIl26dGHFihVMmDAhV/WX8AtCZE7Cbwgh3mS5/nX38PDAysqKGTNm6OwrWbIkffr0ISgoSGff8uXLeffdd6lVq5aaVqpUKaysrKhUqRKNGzdm1qxZ/PTTTyxdupRdu3ZpHR8QEECvXr3o06cPy5cvz231hRBCCFFE5bpxo6enx/Tp05k/fz43b97U2d+/f3+io6O1QiUkJCSwfv16rV6bzPTr148yZcpoPZ56+PAh69ato3fv3rRp04a4uDjCw7NemVbCLwghhBDFS55mS3Xq1In69eszZcoUAgICtPbVrFmTxo0bs3z5clq2bAnA2rVrURSFHj16vLTsEiVK4OzszNWrV9W04OBgqlWrpvb69OjRg4CAAFq0yDxUgIRfKLok5IIQQoiM5HnQyaxZs1ixYgVRUVE6+/z8/Fi/fj0PHz4Enj2S6tq1K2ZmZtkqW1EUdRp4+vG9e/dWX/fu3Zt169ap5WdEwi8IIYQQxUueGzctW7bE09OTiRMn6uxL76FZu3Yt0dHRHDhwIFuPpADS0tKIjo7G0dERgLNnz3L48GE++eQT9PX10dfXp3Hjxjx+/Jjg4OBMy5HwC0IIIUTxki/PZWbOnEn9+vVxcXHRSjczM6Nr164sX76cS5cu4ezsnOUjpOetWLGC+/fv07lzZ+DZQOKWLVuycOFCrXyBgYEEBAQwcODAHNVZwi8IIYQQRVO+NG7q1KmDt7c38+bN09nXv39/WrRoQVRUVKbTth8/fkxsbKzWVPA5c+YwdOhQ3N3defLkCb/++ivTpk3TCbw5YMAAfvjhB86cOaM1A0sIIYQQxVO+LfQybdo0nj59qpPevHlzXFxciI+Pp2/fvhkeu3TpUqytralSpQofffQRZ8+eZc2aNSxatAiATZs2cffuXTp16qRzbI0aNahRo4bOgGYhhBBCFE8SfkEIIYQQr70CD79QEHx8fOjYsaNW2vr16zEyMuL7779XQz5oNBpKliyJo6Mjn3zyCUlJSa+mwkIIIYR4Lb22C70sW7YMf39/lixZgq+vLz4+Pnh5eREYGMiTJ0/4+++/6devHxqNhlmzZuW4/KIefkGWzxdCCFFcvZa/7rNnz2b48OEEBwfj6+urphsaGmJlZYWdnR0dO3bEw8ODnTt3vsKaCiGEEOJ189r13EyYMIFFixaxefNmWrdunWm+//3vfxw8eBB7e/ssy0tOTiY5OVl9LeEXhBBCiKLttWrcbN26lT/++IPdu3fTqlUrnf2bN2/G1NSU1NRUkpOTKVGiBAsWLMiyzGIbfsE2e+sJvakk9IIQQojMvFaPperWrYuDgwNTpkwhISFBZ7+7uzuRkZFERETQr18/fH191UX+MiPhF4QQQoji5bVq3Nja2hIWFsatW7fw8vLSiRllYmJC1apVqVevHsuXLyciIuKl69tI+AUhhBCieHntnsvY29uzd+9e3N3d8fLyYtu2bRkG2ixRogSfffYZY8aMoVevXhgbG+foPBJ+QQghhCiaXquem3R2dnaEhYVx+/ZtPD09Mx0E3LVrV/T09HTiTQkhhBCi+HotGzcAlSpVIiwsjDt37mTawNHX12fYsGHMnj2bR48evYJaCiGEEOJ1U+CPpXx8fFixYsWzk+nrU7ZsWerWrUvPnj3x8fGhxP9fSC8sLIxr166h0WgoVaoULi4uTJw4kQsXLnD16lUcHR0B0Gg0OudwcHDAxMSkoC9FCCGEEG+AQum58fLyIiYmhqtXr7J161bc3d0ZOXIk7du3JzU1Vc03bdo0YmJiOHHiBG+//Tbdu3fn4MGD2NnZERMTo7P9+eef6Onp4e/vXxiXIYQQQog3QKEMKE5fWRiezYhq2LAhjRs3pnXr1gQFBTFgwAAAzMzMsLKywsrKioULF/Lbb7/x559/0rRpU/X4dP/++y9Dhw6lZ8+ejBs3Lsd1KurhF9JJGAYhhBDFzSv7dW/VqhX16tUjJCQkw/36+vqULFmSlJQUnX1Pnjyhc+fOWFlZsXTp0oKuqhBCCCHeIK90Knj16tU5deqUTnpKSgrff/89cXFxGa5UPGzYMC5dusTRo0cxMjLK8hwSfkEIIYQoXl5p40ZRFK0BwhMmTODzzz8nKSkJU1NTZs6cSbt27bSOWbJkCUFBQYSGhlKpUqWXnqPYhl9IVwTDMEjoBSGEEFl5pYNOoqKi1FlQAOPHjycyMpKbN29y//59JkyYoJV///79jBgxgoULF9K0adNsnUPCLwghhBDFyyvrutizZw+nT59m9OjRalr58uWpWrVqhvlv3LhB586dGTRokDoAOTsMDQ0xNDTUSZcVioUQQoiiqVAaN8nJycTGxpKWlsa///7Ltm3bmDFjBu3bt6dv374vPT4pKYlOnTpha2vLp59+SmxsrE6eF2dTCSGEEKJ4KpTGzbZt27C2tkZfX58yZcpQr1495s2bR79+/dRF/LISERHB33//DTwLzZARRVHytc5CCCGEeDNplGLWKoiPj8fc3Jy4uDh5LCWEEEK8IXLy+53tAcUajSbLzc3N7aX7e/TogZeXl1a527ZtQ6PRMHXqVK30qVOnUrlyZa20FStW8Pbbb1OqVCnMzMxwdXVl8+bN2b0EIYQQQhQD2W7cPB/2YO7cuZQuXVor7ZdfflH//8iRIwDs2rVLTQsJCcHd3Z0DBw5ohVwIDQ1Vo4A/LzQ0FHd3d/X1uHHjGDx4MN27d+fUqVMcOXKE5s2b8+GHH7JgwYI83gYhhBBCFBXZHnPz/IBdc3NzNBpNpoN4k5KSAChXrpxWHnd3dxISEjh27BiNGzcGngXM/PTTTxk7dixJSUkYGRmRlJREREQEvr6+ABw+fJjvv/+eefPmMXz4cLW8b775hqSkJMaMGcOHH36Y6XicjBSX8AsvknAMQgghirpC/XV3dnbGxsaG0NBQAB4+fMjx48fp2rUrDg4OHDp0CICDBw+SnJys9tysXr0aU1NTBg8erFPm2LFjefLkCRs2bCi8CxFCCCHEa6vQuy7c3d3VR1Dh4eE4OztjaWlJy5Yt1fSwsDAcHR2xt7cH4MKFC1SpUgUDAwOd8mxsbChdujQXLlzI8HzJycnEx8drbUIIIYQougp9ET83NzdGjRrFkydPCAsLw83NDQBXV1d++ukn4Fnj5vnxNpD7qd7FPvzCi17DcAwSTkEIIUR+eiU9N48ePeLo0aOEhobi6uoKPGvcREREcO/ePSIiIrQCZjo7O3P58uUMI4T/888/xMfH4+zsnOH5JPyCEEIIUbwUetdFlSpVsLOzY9OmTURGRqqNG1tbW2xtbfn+++9JSUnR6rnp0aMH8+bN46efftIaUAzw3XffUbJkSTp37pzh+ST8ghBCCFG8vJLnMu7u7ixatIiqVatSsWJFNd3V1ZX58+erA4/TNWnShJEjRzJ+/HhSUlLo2LEjT5484bfffuPHH39k7ty5OZopJYQQQoii65XMhXZ3d+fhw4fqeJt0rq6uPHz4UGe8DcDcuXNZtGgRq1evpnbt2rz11lvs27ePjRs36vTmCCGEEKL4kvALQgghhHjtFUj4hbxasmQJZmZmWqsTJyQkULJkSZ0enLCwMDQaDZcuXcLBwQGNRkNwcLBOmbVq1UKj0RAUFFTAtRdCCCHEm6LQGjfPr06cLjw8HCsrKyIiItRVjeFZ6IXKlStTpUoV4Fkk8MDAQK3yDh8+TGxsLCYmJoVzAUIIIYR4IxRa48bFxQVra2utGFJhYWF8+OGHODo6cvjwYa3058fdeHt7s3fvXq1p3MuXL8fb2xt9/WK4Vo0QQgghMlWoA4rd3d3V0AvwrIfGzc0NV1dXNT0xMZGIiAitxk3FihXx9PRkxYoVADx+/Jg1a9bg5+dXmNUXQgghxBug0Bs36VHBHz58yIkTJ3B1ddUKvXDo0CGtuFLp/Pz8CAoKQlEU1q9fT5UqVahfv/5LzynhF4QQQojipVCf6bi5uamrE9+/f1+NK+Xq6oqvry9JSUmEhYXh5ORE5cqVtY5t164dgwcPZt++fSxfvjzbvTaZhV+wdvEsnuEXXgMSbkEIIURBKtSem6pVq1KpUiVCQ0O1Qi/Y2NhgZ2fHwYMHCQ0N1Qq9kE5fX58+ffowZcoUIiIi8Pb2ztY5JfyCEEIIUbwUetdFelTw+/fvM378eDW9ZcuWbN26lSNHjjB06NAMj/Xz8+O7776je/fulClTJlvnk/ALQgghRPHySho3/v7+PHnyRO25gWerEw8bNkwnrtTzatSowZ07dyhVqlRhVVcIIYQQb5hX0rhJTEykevXqOnGlHj58qE4Zz0y5cuUKo5pCCCGEeEMVeuPGwcGBjCI+2NvbZ5h+9erVLMt78OBBPtVMCCGEEEVBgQ0o9vHxQaPRMHPmTK30jRs3otFo1NdpaWnMmTOHOnXqYGRkRJkyZWjbti0HDhzQKTMlJYXZs2dTr149SpUqRfny5WnWrBmBgYE8efKkoC5FCCGEEG+QAp0tZWRkxKxZs7h//36G+xVFoUePHkybNo2RI0cSFRVFWFgYdnZ2uLm5sXHjRjVvSkoKnp6ezJw5k0GDBnHw4EGOHDmCv78/8+fP58yZMwV5KUIIIYR4QxToYykPDw8uXrzIjBkzmD17ts7+tWvXsn79ejZt2kSHDh3U9J9//pm7d+8yYMAA2rRpg4mJCXPnzmXfvn0cO3aMBg0aqHmdnJzo2rUrKSkpOarblboOmJUo1Jnw4gVOl++86ioIIYQoggr0111PT4/p06czf/58bt68qbN/1apVODs7azVs0o0dO5a7d++yc+dOAFauXImHh4dWwyZdyZIlMw2gKSsUCyGEEMVLgQ8o7tSpE/Xr12fKlCkEBARo7btw4QI1atTI8Lj09AsXLgAQHR2Nm5tbjs+f2QrFTZNdZIXiQiYrEwshhCgMhfJcZtasWaxYsYKoqCidfRnNkMpIdvO9SFYoFkIIIYqXQmnctGzZEk9PTyZOnKiV7uzsnGGDB1DTnZ2d1f+eO3cux+c2NDSkdOnSWpsQQgghiq5Cey4zc+ZM6tevj4uLi5rWo0cPevXqxZ9//qkz7ub777+nXLlytGnTBoBevXrx2WefceLECZ1xN0+ePCElJSXTcTcZkfALQgghRNFUaNOF6tSpg7e3N/PmzVPTevToQadOnejXrx8BAQFcvXqVU6dOMXjwYDZt2sSyZcvUBsuoUaNo1qwZrVu3ZuHChZw8eZLLly+zdu1aGjduTHR0dGFdihBCCCFeYxolt4NZXsLHx4cHDx5orVVz9epVXFxcSElJUcfQpKamMnfuXIKCgoiOjsbIyIgmTZrwxRdf0KxZM60yk5OTmTNnDqtWrSI6OppSpUpRo0YNBg4ciLe3N/r6L++Iio+Px9zcnLi4OOm5EUIIId4QOfn9LrDGzetKGjdCCCHEmycnv9/58ljqxo0b+Pn5YWNjg4GBAfb29owcOZK7d++qedzc3NBoNGg0GgwNDbG1taVDhw6EhITolJee7/mtefPmWvuf7xESQgghhEiX58bN5cuXeeutt4iOjmb16tVcvHiRJUuWsHv3bpo0acK9e/fUvAMHDiQmJoZLly6xYcMGatasSY8ePRg0aJBOuYGBgcTExKjbpk2b8lpVIYQQQhQDeZ4t5e/vj4GBATt27MDY2BiAypUr06BBA6pUqcKkSZNYvHgxAKVKlcLKygqASpUq0bhxY6pXr46fnx/dunXDw8NDLdfCwkLNWxCKQ/gFCW8ghBCiOMrTr/u9e/fYvn07H3/8sdqwSWdlZYW3tzdr1qzJcgG+fv36UaZMmQwfT+UHCb8ghBBCFC956rmJjo5GUZQsQyjcv3+f//77L9MySpQogbOzM1evXtVK79mzJ3p6eurr3377jY4dO+a4jsU6/IJti3wpRsImCCGEeJPky697XidcKYqCRqPRSpszZ47WYypra+tclT1x4kTGjBmjvo6Pj8fOzi53FRVCCCHEay9PjZuqVaui0WiIioqiU6dOOvujoqIoU6YMlpaWmZaRlpZGdHQ0b7/9tla6lZUVVatWzUv1gGfhFwwNDfNcjhBCCCHeDHlq3KSHR1i0aBGjR4/WGncTGxvLypUr6du3r06vzPNWrFjB/fv36dy5c16qkmMSfkEIIYQomvL8WGrBggU0bdoUT09Pvv76axwdHTlz5gzjx4/H1taWb775Rs37+PFjYmNjSU1N5ebNm/z+++/MmTOHoUOH4u7unqPzXrlyhcjISK20atWq5Si+lBBCCCGKnjw3bqpVq8axY8eYMmUK3bp14969e1hZWdGxY0emTJlC2bJl1bxLly5l6dKlGBgYUK5cORo1asSaNWsyfKT1Ms+Po0kXHh6utdifEEIIIYofCb8ghBBCiNdeoYdfSJfTMAxGRkY4OzszY8YMrRlXV69eRaPRaD12+vXXXzExMeHixYta5/znn38oU6YMCxYsyM9LEUIIIcQbKt8Werl8+TJNmjTB2dmZ1atXa4292bp1K4cPH1YfUQ0cOJBp06aRnJzMnj17GDRoEBYWFgwdOjTT8vv06cPvv/+Oj48P+/bto8T/X1144MCBNGrUCH9//xzVtzisUPy6kpWThRBCFKR8+3V/PgyDq6srlStXpm3btuzatYtbt24xadIkNW96GAZ7e3t8fX2pW7cuO3fufOk5fvrpJy5cuMAPP/wAQFBQEAcOHCAwMDDLGVlCCCGEKD7ypXGT2zAMiqIQHh7OuXPnMDAweOl5LC0t+fnnn/niiy/YuXMno0eP5scff8xyUT4JvyCEEEIUL/nyWCqnYRgWLVrEsmXLSElJ4cmTJxgZGTFixIhsnatjx45069YNLy8vOnToQL9+/bLMX6zDL+SAhFgQQghRVOTroJPsTrzy9vYmMjKSAwcO0LZtWyZNmkTTpk2zfZ4vvviCp0+f8vnnn78078SJE4mLi1O3GzduZPs8QgghhHjz5EvXRU7DMJibm6uhFdauXUvVqlVp3LixViypLCutr6/136xI+AUhhBCieMmXxk1ewjCYmpoycuRIxo0bx4kTJwptYLCEXxBCCCGKpnx7LLVgwQKSk5Px9PRk37593Lhxg23bttGmTRudMAwvGjx4MBcuXGDDhg1a6efPnycyMlJre/LkSX5VWQghhBBFUL6NqM1JGIYXlS1blr59+zJ16lQ++ugjNb1Hjx46eWXMjBBCCCGyIuEXhBBCCPHaK7TwC4cOHUJPT4927doB8O+//1KyZEmCg4MzzN+/f38aNmyoVdEvvviCWrVqYWxsTLly5Xj77beZPXs29+/f1zr2zJkzdOvWDUtLSwwNDXF2dmby5Mk8fvw4L5cghBBCiCImTz03AwYMwNTUlICAAM6fP4+NjQ0dO3bk8ePH7NixQyvvo0ePsLKyYubMmfj7+3Pv3j2aN29OfHw8X331FY0aNcLc3Jzz588TGBhI8+bN1ZAKhw8fxsPDAw8PDz777DMqVqzIkSNHGDt2LHZ2doSGhmZrEUD4v5ZfpH0ZCb9QBEloByGEKJpy0nOT6zE3CQkJrFmzhmPHjhEbG0tQUBCfffYZ/fv3p2PHjly/fp3KlSur+detW0dqaire3t4AfPbZZ1y/fp0LFy5gY2Oj5rO3t+e9995T18xRFIX+/ftTo0YNQkJC1JhS9vb2ODs706BBA+bMmcOECRNyeylCCCGEKEJy3XWxdu1aqlevjouLC71792b58uUoisL7779PxYoVCQoK0sofGBjIRx99hIWFBU+fPmXNmjX07t1bq2HzvPQp4ZGRkZw9e5YxY8aoDZt09erVw8PDg9WrV2daTwm/IIQQQhQvue65CQgIoHfv3gB4eXkRFxfH3r17cXNzo1+/fgQFBfHFF1+g0Wi4dOkS4eHhanDM//77jwcPHuDi4qJVZqNGjTh//jwAHTp0YPXq1Vy4cAEgy9AO+/fvz7SeEn4haxJ2QQghRFGTq56b8+fPc+TIEXr27Ak8Wym4e/fuBAQEAODn58eVK1cIDQ0FnvXaODg40KpVqyzL/f3334mMjMTT05PExEStfbkdGiThF4QQQojiJVddFwEBAaSmpmo9UlIUBUNDQxYsWEC1atVo0aIFgYGBuLm58csvvzBw4ED1UZOlpSUWFhZqL0269DE6ZmZmPHjwAABnZ2fgWQiHBg0a6NQlKipKzZMRCb8ghBBCFC85btykpqbyyy+/8P333/Pee+9p7evYsSOrV69myJAh9O/fn6FDh/LBBx9w69YtfHx81HwlSpSgW7du/Pbbb0yePDnTcTcA9evXp3r16syZM4cePXpojbs5efIku3btYsaMGTm9DAm/IIQQQhRROZ4KvnHjRrp3787t27cxNzfX2jdhwgT27NnD0aNHefz4MdbW1ujp6fHuu++ydetWrbx3796ladOmPHr0iGnTpvHWW29hYmLCqVOn+PTTT6ldu7YajuHgwYO0adOG9957j4kTJ2JlZUVERIQ6FXzPnj3Z7p2RRfyEEEKIN0+BLuIXEBCAh4eHTsMGoHPnzhw7doxTp05RqlQpevTowf379/Hz89PJW65cOY4cOULfvn359ttveeedd6hTpw5Tp06le/fuLF26VM3btGlTDh8+jJ6eHm3btqVq1apMnDiRfv36sXPnTnnsJIQQQgiVhF8QQgghxGuv0MIvZGbJkiWYmZmRmpqqpiUkJFCyZEnc3Ny08oaFhanTxU+ePMkHH3xAhQoVMDIywsHBQX0ENnXqVDQaTZabEEIIIUSBLPTi7u5OQkICx44do3HjxgCEh4erY2WSkpIwMjICIDQ0lMqVK1O6dGneffdd2rdvz/bt27GwsODq1ats2rSJR48eMW7cOIYMGaKe4+2332bQoEEMHDgwV3W8UtfhtQ6/IGEEhBBCiNwpkMaNi4sL1tbWhIWFqY2bsLAwPvzwQ/bs2cPhw4fVHpywsDDc3d05cOAAcXFxLFu2DH39Z9VydHTE3d1dLdfU1FT9fz09PczMzLCysiqISxBCCCHEG6rAui7c3d3VRfzgWQ+Nm5sbrq6uanpiYiIRERG4u7tjZWVFamoqv//+e64X7MuIhF8QQgghipcCiz/g7u7OqFGjSE1NJTExkRMnTuDq6sqTJ09YsmQJAIcOHSI5ORl3d3cqV67MZ599Rq9evRgyZAjvvPMOrVq1om/fvlSsWDHX9Xhjwy/Ytsj1oRJSQQghRHFWYD03bm5uPHr0iKNHjxIeHo6zszOWlpa4urqq427CwsJwcnJSVyb+5ptviI2NZcmSJdSqVYslS5ZQvXp1Tp8+net6SPgFIYQQongpsMZN1apVqVSpEqGhoYSGhuLq6gqAjY0NdnZ2HDx4kNDQUJ14U+XKlaNr16589913REVFYWNjw3fffZfrehgaGlK6dGmtTQghhBBFV4E+l3F3dycsLIz79+8zfvx4Nb1ly5Zs3bqVI0eOMHTo0EyPNzAwoEqVKjx69Cjf6ybhF4QQQoiiqcAbN/7+/jx58kTtuQFwdXVl2LBhpKSkqLOhNm/eTHBwMD169MDZ2RlFUfjzzz/ZsmULgYGBBVlNIYQQQhQhBd64SUxMpHr16lqDgl1dXXn48KE6ZRygZs2alCpVirFjx3Ljxg0MDQ2pVq0ay5Yto0+fPgVZTSGEEEIUIXkec+Pj44NGo9FaYC/dt99+C8C7774LwH///cfQoUNp0aIFBgYGPHjwAE9PTw4cOICTkxM///wzycnJJCYm8uDBA44ePYqvry+VKlXSWaH42rVrjB49WlYoFkIIIYSWfOm5sbOzIzg4mDlz5mBsbAxAUlISq1atUmdCwbPAmikpKaxYsQInJyf+/fdfdu/ezd27d7XKmzZtmtbKw3p6ehgbG+frCsVCCCGEKJrypXHTsGFDLl26REhICN7e3gCEhIRQuXJlHB0dAXjw4AHh4eGEhYWp42/s7e155513dMrLbOXh/FyhOKvwCxL6QAghhHhz5dtUcD8/P62Bv8uXL8fX11d9bWpqiqmpKRs3biQ5OTm/TiuEEEIIoSXfGje9e/dm//79XLt2jWvXrnHgwAF69+6t7tfX1ycoKIgVK1ZgYWFBs2bN+Oyzzzh16pROWRMmTFAbQ6ampsybNy/X9ZLwC0IIIUTxkm+zpSwtLWnXrh1BQUEoikK7du0oX768Vp7OnTvTrl07wsPDOXz4MFu3bmX27NksW7YMHx8fNd/48eO1Xr9YTk7kKvxCHkIfvCoSckEIIYR4Jl9XKPbz81N7Z/z8/DLMY2RkRJs2bfjiiy84ePAgPj4+TJkyRStP+fLlqVq1qrpZWFjkuk4SfkEIIYQoXvJ1nRsvLy9SUlLQaDR4enpm65iaNWuycePG/KyGFkNDQwwNDXXSZYViIYQQomjK18aNnp4eUVFR6v8/7+7du3Tt2hU/Pz/q1q2LmZkZx44dY/bs2Xz44Yf5WQ0hhBBCFGP5vkJxZr0hpqamvPvuu8yZM4dLly7x5MkT7OzsGDhwIJ999ll+V0MIIYQQxZRGURTlVVeiMMXHx2Nubk5cXJw8lhJCCCHeEDn5/c7XAcW5lR7C4cXNy8sLAAcHBzXN2NgYBwcHunXrxp49e15xzYUQQgjxunktGjfwbDByTEyM1rZ69Wp1/7Rp04iJieH8+fP88ssvWFhY4OHhwTfffPMKay2EEEKI102BRgXPCUNDwyxDKTwfaqFy5cq0bNkSa2trJk+eTJcuXXBxcSmsqgohhBDiNfba9NzkxsiRI1EUhT/++ONVV0UIIYQQr4nXpnGzefNmrZALpqamTJ8+PctjypYtS4UKFbh69WqmeST8ghBCCFG8vDaPpdzd3Vm8eLFWWtmyZV96nKIoaDSaTPdnFn7B2sUz8/ALhUxCJwghhBD55/X4dQdMTEyoWrVqjo65e/cu//33H46OjpnmmThxImPGjFFfx8fHY2dnl+t6CiGEEOL19to0bnLjxx9/pESJEnTs2DHTPBJ+QQghhCheXpvGTXJyMrGxsVpp+vr6akTwhw8fEhsby5MnT7hy5Qq//fYby5YtY8aMGTnu8RFCCCFE0fXaNG62bduGtbW1VpqLiwvnzp0DYPLkyUyePBkDAwOsrKxo3Lgxu3fvxt3d/VVUVwghhBCvKQm/IIQQQojXXqGFX0gPmzBkyBCdff7+/mg0Gnx8fNS8L46NWb9+PUZGRhmGXnh+CwoKYvHixVhYWHDjxg2tMoYPH46zszOPHz/Oy6UIIYQQoojI8zo3dnZ2BAcHk5iYqKYlJSWxatUqKleunOlxy5Ytw9vbm4ULF2qFXBg7diy1atXSSuvevTtDhgzhnXfeoX///moZu3fvZvHixQQFBVGqVKm8XooQQgghioA8N24aNmyInZ0dISEhalpISAiVK1emQYMGGR4ze/Zshg8fTnBwMP3798fKykrdTE1N0dfX10ozNjZGo9EQEBBAREQES5YsIT4+Hj8/P8aMGUPTpk3zehlCCCGEKCLyZYViPz8/AgMD1dfLly/H19c3w7wTJkzgq6++YvPmzXTq1ClH57Gzs2Pu3LmMHz+e3r17Y2pqyldffZXlMbJCsRBCCFG85Mtsqd69ezNx4kSuXbsGwIEDBwgODiYsLEwr39atW/njjz/YvXs3rVq1ytW5fH19+fnnn/nzzz+JiIjIcA2b58kKxUIIIUTxki89N5aWlrRr146goCACAwNp166duj7N8+rWrYuDgwNTpkwhISEhV+c6efIkx48fp1SpUoSHv7xRMHHiROLi4tTtxQHJQgghhCha8i1wpp+fH0FBQaxYsQI/P78M89ja2hIWFsatW7fw8vLi4cOHOTpHSkoKffv2xdvbm0WLFvH5559z/vz5LI8xNDSkdOnSWpsQQgghiq58ey7j5eVFSkoKGo0GT0/PTPPZ29uzd+9e3N3d8fLyYtu2bZiZmWXrHNOmTePevXvMmTMHc3NzNmzYgK+vL/v376dEiZy10yT8ghBCCFE05VvPjZ6eHlFRUZw9exY9Pb0s89rZ2REWFsbt27fx9PTM1iDfo0ePMmvWLAICAjA3Nwfgp59+4vz588yZMydfrkEIIYQQb758a9wAOXrsU6lSJcLCwrhz585LGzjJycn069cPX19f3nvvPTXd2tqa+fPnZ+vxlBBCCCGKBwm/IIQQQojXXqGFX8iuQ4cOoaenR7t27bTS3dzcsgy7sHfvXjXvjRs38PPzw8bGBgMDA+zt7Rk5ciR3794tjEsQQgghxBuiUHpuBgwYgKmpKQEBAZw/fx4bGxsA7t27R0pKilbelJQU2rVrh5GREeHh4RgZGXH58mWaNGmCs7MzX3/9NY6Ojpw5c4bx48eTkpLC4cOHKVu2bLbqIj03QgghxJsnJ7/fBb6KXUJCAmvWrOHYsWPExsYSFBTEZ599BpBhg2TgwIHcuXOHo0ePYmRkBDwLwmlgYMCOHTswNjYGUMM7VKlShUmTJrF48eKCvhQhhBBCvAEK/LHU2rVrqV69Oi4uLvTu3Zvly5eTWWfRokWL+OWXX9iwYQOVKlUCnvXubN++nY8//lht2KSzsrLC29ubNWvWZFqmhF8QQgghipcC77kJCAigd+/ewLO1cOLi4ti7dy9ubm5a+fbt28eoUaNYtGiRViDM6OhoFEWhRo0aGZZfo0YN7t+/z3///UeFChV09r/u4Rck9IIQQgiRvwq05+b8+fMcOXKEnj17AqCvr0/37t0JCAjQynf9+nW6dOnCoEGDGDBgQIZl5XZokIRfEEIIIYqXAu26CAgIIDU1VR1ADM8aKYaGhixYsABzc3MSExPp1KkTtWrVYu7cuTplVK1aFY1GQ1RUVIZRxKOioihTpgyWlpYZ1sHQ0PClwTWFEEIIUXQU2Gyp1NRUKlWqxCeffKK18B5Ax44dGTduHEOGDMHb25uDBw9y9OjRDINtAnh6enLmzBmio6O1xt3ExsZSpUoV+vbtm+0BxTJbSgghhHjzvBazpTZv3sz9+/fp37+/Gi4hXefOnQkICODhw4esW7eOP//8k9TUVGJjY7XymZubY2xszIIFC2jatCmenp46U8FtbW355ptvCuoyhBBCCPGGKbCemw4dOvD06VP++usvnX1Hjhzh3XfffWkZgYGB+Pj4AHDt2jWmTJnCtm3buHfvHlZWVnTs2JEpU6ZQrly5bNdLem6EEEKIN09Ofr8l/IIQQgghXnsFHn7Bx8cHjUbDkCFDdPb5+/uj0WjUHpf0vDNnztTKt3HjRjQajVba0qVLqVevHqamplhYWNCgQQNmzJgBgIODQ5ahGtLPJ4QQQojiLddTwe3s7AgODiYxMVFNS0pKYtWqVVSuXFkrr5GREbNmzeL+/fuZlrd8+XJGjRrFiBEjiIyM5MCBA3zyySckJCQAcPToUWJiYoiJiWHDhg3As6nm6Wk//vhjbi9FCCGEEEVIrgcUN2zYkEuXLhESEoK3tzcAISEhVK5cGUdHR628Hh4eXLx4kRkzZjB79uwMy9u0aRPdunWjf//+alqtWrXU/39+qnd62IYKFSpgYWGR20sQQgghRBGUp0X8/Pz8CAwMVF8vX74cX19fnXx6enpMnz6d+fPnc/PmzQzLsrKy4vDhw1y7di0vVdIh4ReEEEKI4iVPU8F79+7NxIkT1QbJgQMHCA4OJiwsTCdvp06dqF+/PlOmTNFZoRhgypQpfPTRRzg4OODs7EyTJk14//336dKlCyVK5L4N9rqEX5AwC0IIIUThyFPPjaWlJe3atSMoKIjAwEDatWuX6UJ8ALNmzWLFihVERUXp7LO2tubQoUOcPn2akSNHkpqaSr9+/fDy8uLp06e5rqOEXxBCCCGKlzzHlvLz8yMoKIgVK1bg5+eXZd6WLVvi6enJxIkTM81Tu3ZtPv74Y3777Td27tzJzp072bt3b67rZ2hoSOnSpbU2IYQQQhRdeX4u4+XlRUpKChqNBk9Pz5fmnzlzJvXr18fFxeWleWvWrAnAo0eP8lpNHTHnt0tDRwghhCiC8ty40dPTUx8z6enpvTR/nTp18Pb2Zt68eVrpQ4cOxcbGhlatWlGpUiViYmL4+uuvsbS0pEmTJnmtphBCCCGKiTw/lgJy/Lhn2rRpOuNoPDw8OHz4MF27dsXZ2ZnOnTtjZGTE7t27cxReQQghhBDFm4RfEEIIIcRrr8DDL+RWbGwsw4cPx8nJCUNDQ+zs7OjQoQO7d+8GnoVYmDt3bobHbtmyBQMDA44fP66V/v3331O+fHmdiOJCCCGEKJ4KbaGXq1ev0qxZMywsLPj222+pU6cOT548Yfv27fj7+3Pu3Lksj3///ffp27cvffv25e+//8bQ0JCzZ8/y+eefExQUhJWVVSFdiRBCCCFeZ4XWuPn444/RaDQcOXIEExMTNb1WrVovnUKebs6cOdSpU4cpU6bw9ddf069fPzp06ED37t0LqtpCCCGEeMMUSuPm3r17bNu2jW+++UarYZMuu/GhzMzMWL58OZ6enly5coUbN26wbdu2LI9JTk4mOTlZfS3hF4QQQoiirVAaNxcvXkRRFKpXr57nslq1akWXLl0IDg5mzZo1L51J9TqEX5DQC0IIIUThKZQBxfk5IevWrVts27aNUqVKER7+8kaDhF8QQgghipdCadxUq1YNjUbz0kHD2TFw4EAaNWrE5s2bWbx48UtDM0j4BSGEEKJ4KZTnMmXLlsXT05OFCxcyYsQInXE3Dx48yNa4m2XLlrF//35Onz6Nvb09Q4cOxc/Pj1OnTmU4licrEn5BCCGEKJoKbZ2bhQsXkpaWxjvvvMOGDRuIjo4mKiqKefPmaYVXuHXrFpGRkVrb/fv3uXbtGmPGjOG7777D3t4eeBZlXKPR8OmnnxbWZQghhBDiNVeoKxTHxMTwzTffsHnzZmJiYrC0tKRRo0aMHj0aNzc3HBwcuHbtms5xv/zyCytWrEBPT4/t27dr7du/fz9ubm7s3r0bV1fXl9ZBVigWQggh3jw5+f2W8AtCCCGEeO0VWvgFHx8fNBoNQ4YM0dnn7++PRqPBx8dHK++Lm5eXF2FhYRnue34LCwsD4ObNmxgYGFC7du28VF0IIYQQRVSeBxTb2dkRHBzMnDlzMDY2BiApKYlVq1ZRuXJlrbxeXl4EBgZqpRkaGmJiYkJMTIyaNnLkSOLj47Xyli1bFoCgoCC6devGvn37iIiI4N13381Vva/UdcCsRMEMOXK6fKdAyhVCCCHEy+W5cdOwYUMuXbpESEgI3t7eAISEhFC5cmUcHR218hoaGmYaA+r5dGNjY5KTk3XyKopCYGAgixYtolKlSgQEBOS6cSOEEEKIoilfui78/Py0elmWL1+Or69vfhStJTQ0lMePH+Ph4UHv3r0JDg7m0aNHWR6TnJxMfHy81iaEEEKIoitf1rnp3bs3EydOVGc6HThwgODgYHWcTLrNmzdjamqqlfbZZ5/x2WefZes8AQEB9OjRAz09PWrXro2TkxPr1q1Tx/VkJLPwC02TXQou/IJtC0DCLgghhBCvQr78ultaWtKuXTuCgoJQFIV27dpRvnx5nXzu7u4sXrxYKy19LM3LPHjwgJCQEPbv36+m9e7dm4CAgCwbNxMnTmTMmDHq6/j4eOzs7LJ1TiGEEEK8efKt68LPz49hw4YBzxbsy4iJiQlVq1bNVfmrVq0iKSlJa4yNoig8ffqUCxcu4OzsnOFxhoaGGBoa5uqcQgghhHjz5FvjxsvLi5SUFDQaDZ6envlVrCogIICxY8fq9NJ8/PHHLF++nJkzZ+aoPAm/IIQQQhRN+da40dPTIyoqSv3/jCQnJxMbG6tdAX39DB9hPS8yMpLjx4+zcuVKqlevrrWvZ8+eTJs2ja+//hp9/UIJlSWEEEKI11i+LvTysqjb27Ztw9raWmtr3rz5S8sNCAigZs2aOg0bgE6dOnH79m22bNmSp7oLIYQQomiQ8AtCCCGEeO0VWviF7PLx8aFjx4466elhFx48eKATgsHS0pL333+f06dPZ6ssIYQQQggopMZNTpw/f56YmBi2b99OcnIy7dq1IyUl5VVXSwghhBBviNeucVOhQgWsrKxo2LAho0aN4saNG5w7d+5VV0sIIYQQb4jXdnpRXFwcwcHBABgYGOS6nOTkZJKTk9XXEn5BCCGEKNoKrXGTUeiFtLQ0nXyVKlUCUGNGffDBBxnOksquzMIvWLt45kv4BQmxIIQQQrxeCu2xlLu7O5GRkVrbsmXLdPKFh4fz999/ExQUhLOzM0uWLMnTeSdOnEhcXJy63bhxI0/lCSGEEOL1Vmg9NxmFXrh586ZOPkdHRywsLHBxceH27dt0796dffv25fq8En5BCCGEKF5e2zE3AP7+/syYMYPff/+dTp065WvZEn5BCCGEKJpe68ZNqVKlGDhwIFOmTKFjx45oNBrg2WDjyMhIrbzlypWTaN9CCCGEeP2mgr9o2LBhREVFsW7dOjUtLCyMBg0aaG0ZDRoWQgghRPGTL40bHx8fNBqNTmTujRs3otFoCAoKYtSoUVorEGs0Gtzd3Zk0aRIWFhaZlm1nZ8eTJ0/YsGED77zzDgEBASiKgqIopKSk0LBhQ3r16pXh4GQhhBBCFD/51nNjZGTErFmzuH//fpb50lcgTt8+/fTTbJW/aNEirl+/rtWA+uqrr4iJiWHBggV5qrsQQgghio58G3Pj4eHBxYsXmTFjBrNnz840X4UKFbLsqclMuXLl+Pnnn+natSsdOnQgJSWFGTNm8Mcff1CmTJkcl3elrgNmJV7Pp3JOl++86ioIIYQQb6x8+3XX09Nj+vTpzJ8/P8Mp3vnhgw8+oEePHvTt25d+/frRr18/3n///QI5lxBCCCHeTPnaddGpUyfq16/PlClTMs1TqVIlTE1N1e3u3bs5OsfcuXO5cOECd+/e5Ycffnhp/uTkZOLj47U2IYQQQhRd+T4VfNasWbRq1Ypx48ZluD88PBwzMzP1dU4fKa1evRqNRsOdO3c4d+4c77zzTpb5Mwu/0DTZRcIvCCGEEEVQvg86admyJZ6enkycODHD/Y6OjlStWlXdSuRg3Mvly5f55JNPWLx4MX369MHHx0crKGZGJPyCEEIIUbwUyCJ+M2fOpH79+ri4uORbmU+fPsXHx4fWrVvTt29fPvzwQ2rXrs3kyZOZNWtWpsdlFn5BVigWQgghiqYCadzUqVMHb29v5s2bl+NjT58+rfXYSqPRUK9ePX788UfOnDnDmTNnADA3N2fZsmW0b9+ezp07v/TxlBBCCCGKhwILvzBt2jTWrFmT4+Natmyp9VpPT4+zZ88yadIkli1bhpWVlbrP09MTX19ffHx8OHHihATIFEIIIQQaRVGUV12JwhQfH4+5uTlxcXHyWEoIIYR4Q+Tk9zvfBhQvWbIEMzMzUlNT1bSEhARKliyJm5ubVt6wsDA0Gg2XLl3CwcEBjUZDcHCwTpm1atVSwzekH5PVFhYWll+XI4QQQog3VL41btzd3UlISODYsWNqWnh4OFZWVkRERJCUlKSmh4aGUrlyZapUqQI8ix8VGBioVd7hw4eJjY3FxMQEgKZNm2qFbejWrRteXl5aaU2bNs2vyxFCCCHEGyrfGjcuLi5YW1tr9Z6EhYXx4Ycf4ujoyOHDh7XS3d3d1dfe3t7s3btXa5r28uXL8fb2Rl//2bAgAwMDrKys1M3Y2BhDQ0OtNAMDg/y6HCGEEEK8ofJ1nRt3d3dCQ0PV16Ghobi5ueHq6qqmJyYmEhERodW4qVixIp6enqxYsQKAx48fs2bNGvz8/PKzekIIIYQoBvK9cXPgwAFSU1N5+PAhJ06cwNXVlZYtW6o9OocOHSI5OVmrcQPg5+dHUFAQiqKwfv16qlSpQv369fNcJwm/IIQQQhQv+ToV3M3NjUePHnH06FHu37+Ps7MzlpaWuLq64uvrS1JSEmFhYTg5OVG5cmWtY9u1a8fgwYPZt28fy5cvz7dem8zCL1i7eOY6/IKEXBBCCCFeX/nac1O1alUqVapEaGgooaGhuLq6AmBjY4OdnR0HDx4kNDSUVq1a6Ryrr69Pnz59mDJlChEREXh7e+dLnST8ghBCCFG85Psifu7u7oSFhXH//n3Gjx+vprds2ZKtW7dy5MgRhg4dmuGxfn5+fPfdd3Tv3j3HATUzI+EXhBBCiOKlQBo3/v7+PHnyRO25AXB1dWXYsGGkpKTojLdJV6NGDe7cuUOpUqXyu1pCCCGEKCYKpHGTmJhI9erVqVixopru6urKw4cP1SnjmSlXrlx+V0kIIYQQxYiEXxBCCCHEa++VhF94kZubG6NGjdJJDwoKwsLCAoCpU6ei0WgYMmSIVp7IyEg0Gg1Xr14F4OrVq2g0GiIjI7N9HiGEEEIUTwXWuMkuIyMjAgICiI6OftVVEUIIIUQRkO9jbnLKxcWFChUqMGnSJNauXVto571S1wGzEq+8bafF6fKdV10FIYQQ4o33yhs3ADNnzuTtt9/m2LFjvPXWW/ladnJyMsnJyeprWaFYCCGEKNpei8ZNw4YN6datGxMmTGD37t2Z5mvatCklXuhtSUxMzDJMQ2YrFDdNdsnVCsWyOrEQQgjxenstGjcAX3/9NTVq1GDHjh1UqFAhwzxr1qyhRo0aWmkvW8l44sSJjBkzRn0dHx+PnZ1d3isshBBCiNdSgTVuSpcuTVxcnE76gwcPMDc310mvUqUKAwcO5NNPPyUgICDDMu3s7KhatapWmrGxcZb1yGyFYiGEEEIUTQXWuHFxcWHHjh066cePH8fZ2TnDYyZPnkyVKlUIDg4uqGqpJPyCEEIIUTQV2HShoUOHcuHCBUaMGMGpU6c4f/48P/zwA6tXr2bs2LEZHlOxYkXGjBnDvHnzCqpaQgghhCjiCqxx4+TkxL59+zh37hweHh68++67rF27lnXr1uHl5ZXpcePGjcPU1LSgqiWEEEKIIk7CLwghhBDitVeg4Rd8fHzQaDRoNBpKlixJxYoVadOmDcuXL+fp06cA/PPPP5QpU0bn8VJERAQlS5ZUx+KkpKQwe/Zs6tWrR6lSpShfvjzNmjUjMDCQJ0+eaJ3vxRANAP7+/mg0Gnx8fHJ6GUIIIYQoonL1WMrLy4uYmBiuXr3K1q1bcXd3Z+TIkbRv357U1FRsbGyYP38+EydOVMMqJCYm0q9fPwYMGMB7771HSkoKnp6ezJw5k0GDBnHw4EGOHDmCv78/8+fP58yZM+r57OzsCA4OJjExUU1LSkpi1apVVK5cOY+3QAghhBBFSa5mSxkaGmJlZQWAra0tDRs2pHHjxrRu3ZqgoCAGDBhA7969CQkJwcfHh/DwcCZOnMiTJ0/49ttvAZg7dy779u3j2LFjNGjQQC3bycmJrl27kpKSoqY1bNiQS5cuERISoq5rExISQuXKlXF0dMzVhb8u4Rck5IIQQgiRv/Lt171Vq1bUq1ePkJAQNW3JkiVER0fj7e3NggULCAwMVAcLr1y5Eg8PD62GTbqSJUtiYmKilebn50dgYKD6evny5fj6+r60XsnJycTHx2ttQgghhCi68nWdm+rVq3Pq1Cn1dYUKFfjqq68YMmQIQ4cOpWXLluq+6Oho3Nzcsl127969mThxIteuXQPgwIEDBAcHExYWluVxuQ2/IGEWhBBCiDdTvjZuFEVBo9Gor9PS0ggKCqJUqVIcPnyY1NRU9PX11bw5YWlpSbt27QgKCkJRFNq1a0f58uVfepyEXxBCCCGKl3wddBIVFaU1Bua7777j8uXLHDt2jJs3bzJ9+nR1n7OzM+fOnctR+X5+fgQFBbFixQr8/PyydYyhoSGlS5fW2oQQQghRdOVbz82ePXs4ffo0o0ePBuDMmTNMmTKFVatWUaNGDRYvXkzPnj3p2LEjdevWpVevXnz22WecOHFCZ9zNkydPSElJ0Rl34+XlRUpKChqNBk9PzzzVV8IvCCGEEEVTrnpukpOTiY2N5datWxw/fpzp06fz4Ycf0r59e/r27Utqair9+vXjo48+4qOPPgKgc+fOdO7cGR8fH1JTUxk1ahTNmjWjdevWLFy4kJMnT3L58mXWrl1L48aN1Snkz9PT0yMqKoqzZ8+ip6eXtysXQgghRJGUq56bbdu2YW1tjb6+PmXKlKFevXrMmzePfv36UaJECaZNm8atW7d0AmcuXLiQWrVqMX36dCZPnszOnTuZM2cOP/30E+PGjaNUqVLUqFGDESNGULt27QzPLb0tQgghhMiKhF8QQgghxGuvQMMv5FZaWhpNmzZVH1Oli4uLw87OjkmTJnH16lU1tMOL2+HDhwEICgrCwsKisKothBBCiDdMoTVu9PT0CAoKYtu2baxcuVJNHz58OGXLlmXKlClq2q5du4iJidHaGjVqVFhVFUIIIcQbLF/XuXkZZ2dnZs6cyfDhw2nVqhVHjhwhODiYo0ePYmBgoOYrV66cGt5BCCGEECInCrVxA896an7//Xf69OnD6dOnmTx5MvXq1Suw8yUnJ5OcnKy+lvALQgghRNFW6I0bjUbD4sWLqVGjBnXq1OHTTz/VydO0aVNKvBDUMiEhIVfnyyz8grWLZ6bhFyT0ghBCCPHmKvTGDTwLelmqVCmuXLnCzZs3cXBw0Nq/Zs0aatSokS/nkvALQgghRPFS6I2bgwcPMmfOHHbs2MHXX39N//792bVrl1ZMKjs7O6pWrZov5zM0NMTQ0DBfyhJCCCHE669QGzePHz/Gx8eHoUOH4u7ujqOjI3Xq1GHJkiUMHTq0MKsi4ReEEEKIIqpQGzcTJ05EURRmzpwJgIODA9999x3jxo2jbdu2ar67d+8SGxurdayFhQVGRkbAszVzIiMjtfYbGhrm26MsIYQQQry5Cq1xs3fvXhYuXEhYWBilSpVS0wcPHkxISAj9+/dn2bJlAHh4eOgcv3r1anr06AE8G1z8YrDNKlWqcPHixQK8AiGEEEK8CST8ghBCCCFee4UWfiE2Npbhw4fj5OSEoaEhdnZ2dOjQgd27dwPPHjulh0/Q09PDxsaG/v37c//+fa1y7t27x6hRo7C3t8fAwAAbGxv8/Py4fv26Vj4fH58MQzN4eXnl5TKEEEIIUYTkunFz9epVGjVqxJ49e/j22285ffo027Ztw93dHX9/fzXftGnTiImJ4fr166xcuZJ9+/YxYsQIdf+9e/do3Lgxu3btYsmSJVy8eJHg4GAuXrzI22+/zeXLl7XO6+XlpROaYfXq1bm9DCGEEEIUMbkec/Pxxx+j0Wg4cuQIJiYmanqtWrXw8/NTX5uZmamhFGxtbenXr59WY2TSpEn8888/XLx4Uc1XuXJltm/fTrVq1fD392fr1q1qfkNDQwnNIIQQQohM5arn5t69e2zbtg1/f3+thk26zKJ237p1iz///JN3330XgKdPnxIcHIy3t7dOg8XY2JiPP/6Y7du3c+/evdxUE3gWfiE+Pl5rE0IIIUTRlavGzcWLF1EUherVq78074QJEzA1NcXY2JhKlSqh0Wj44YcfAPjvv/948OBBplO4a9SogaIoWrOgNm/ejKmpqdY2ffr0TM8/Y8YMzM3N1S19dWJrF09MbVtobUIIIYR48+WqcZOTCVbjx48nMjKSU6dOqQON27VrR1paWq7Kc3d3JzIyUmsbMmRIpvknTpxIXFycut24cSPb5xJCCCHEmydXY26qVauGRqPh3LlzL81bvnx5NZRCtWrVmDt3Lk2aNCE0NJRWrVphYWFBVFRUhsdGRUWh0Wi0QjGYmJjkKDSDhF8QQgghipdc9dyULVsWT09PFi5cyKNHj3T2P3jwINNj9fT0AEhMTKREiRJ069aNVatW6axInJiYyKJFi/D09KRs2bK5qWaWYs5vJ+FWuNYmhBBCiDdfrqeCL1y4kLS0NN555x02bNhAdHQ0UVFRzJs3jyZNmqj5Hj58SGxsLDExMRw5coTx48djaWlJ06ZNAZg+fTpWVla0adOGrVu3cuPGDfbt24enpydPnjxh4cKFWudNTk4mNjZWa7tz505uL0MIIYQQRUyuGzdOTk4cP34cd3d3xo4dS+3atWnTpg27d+9m8eLFar7JkydjbW2NjY0N7du3x8TEhB07dlCuXDkAypUrx+HDh3F3d2fw4MFUqVKFbt26UaVKFY4ePYqTk5PWebdt24a1tbXW1rx589xehhBCCCGKGAm/IIQQQojXXqGFX8hIeoiEjGYw+fv7o9Fo8PHxUdNu3LiBn58fNjY2GBgYYG9vz8iRI7l7967WsW5ubowaNUqnzKCgoEzX1RFCCCFE8VMgUcHt7OwIDg5mzpw5GBsbA5CUlMSqVauoXLmymu/y5cs0adIEZ2dnVq9ejaOjI2fOnGH8+PFs3bqVw4cPF8hgYoArdR0wK5F1287psozlEUIIId40+d5zA9CwYUPs7OwICQlR00JCQqhcuTINGjRQ0/z9/TEwMGDHjh24urpSuXJl2rZty65du7h16xaTJk0qiOoJIYQQoggrkMYNgJ+fH4GBgerr5cuX4+vrq76+d+8e27dv5+OPP1Z7d9JZWVnh7e3NmjVrcrTAX0Yk/IIQQghRvBTIYymA3r17M3HiRK5duwbAgQMHCA4OJiwsDIDo6GgURcky9ML9+/f577//qFChAgCLFi1i2bJlWvlSU1MxMjLKtB4zZszgyy+/1ElvmuzCo5hDubk0IYQQQrzGCqxxY2lpSbt27QgKCkJRFNq1a0f58uV18uWkZ8bb21vnUVVISEiWsaUmTpzImDFj1Nfx8fFqfCkhhBBCFD0F1riBZ4+mhg0bBqCzGF/VqlXRaDRERUXRqVMnnWOjoqIoU6YMlpaWapq5ublO6IX0Xp3MSPgFIYQQongpsDE3AF5eXqSkpPDkyRM8PT219pUrV442bdqwaNEiEhMTtfbFxsaycuVKunfvjkajKZC6xZzfXiDlCiGEEOLVKtDGjZ6eHlFRUZw9e1aNKfW8BQsWkJycjKenJ/v27ePGjRts27aNNm3aYGtryzfffFOQ1RNCCCFEEVSgjRuA0qVLZ7qSYLVq1Th27BhOTk5qyIVBgwbh7u7OoUOHCmyNGyGEEEIUXRJ+QQghMpCWlsaTJ09edTWEKDZKliyZ4VOedDn5/c73AcVLlixh/Pjx3L9/H339Z8UnJCRQpkwZmjVrpk4FBwgLC8Pd3Z2LFy/SunVrddr482bMmMGnn36qvt6wYQPz58/nxIkTpKWl4eTkRJcuXRg2bJj09Agh8kxRFGJjY3nw4MGrrooQxY6FhQVWVlZ5Hm+b740bd3d3EhISOHbsGI0bNwYgPDwcKysrIiIiSEpKUtelCQ0NpXLlylSpUgWAadOmMXDgQK3yzMzM1P+fNGkSs2bNYvTo0UyfPh0bGxuio6NZsmQJv/76KyNHjszvyxFCFDPpDZsKFSpQqlSpApvUIIT4P4qi8PjxY27fvg2AtbV1nsrL98aNi4sL1tbWhIWFqY2bsLAwPvzwQ/bs2cPhw4dxc3NT093d3dVjzczMsLKyyrDcI0eOMH36dObOnavViHFwcKBNmzbyV5YQIs/S0tLUhk25cuVedXWEKFbSoxXcvn2bChUqZPmI6mUKZECxu7s7oaGh6uvQ0FDc3NxwdXVV0xMTE4mIiNBq3GRl5cqVmJqa8vHHH2e4P7PI4BJ+QQiRXeljbEqVKvWKayJE8ZT+2cvreLcCa9wcOHCA1NRUHj58yIkTJ3B1daVly5bqmJtDhw6RnJys1biZMGECpqamWlt4eDjwLFyDk5MTJUuWzFFdZsyYgbm5ubrJ6sRCiJeRR1FCvBr59dkrkBWK3dzcePToEUePHuX+/fs4OztjaWmJq6srvr6+JCUlERYWhpOTE5UrV1aPGz9+PD4+Plpl2draAjkL0/A8Cb8ghBBCFC8F0nNTtWpVKlWqRGhoKKGhobi6ugJgY2ODnZ0dBw8eJDQ0lFatWmkdV758eapWraq1pT+Dc3Z25vLlyznuqjI0NFTX2slqzR0hhChqNBoNGzduzPe86WJjY2nTpg0mJiaZDg0o7hwcHJg7d26ey9BoNGg0mjd6fGlhXkeBxZZyd3cnLCyM+/fvM378eDW9ZcuWbN26lSNHjjB06NBsl9erVy/mzZvHokWLMpwV9eDBA/lwCSEKhKlti0I9X8Kt8HwpJyYmhjJlyuRLWRmZM2cOMTExREZGYm5uXmDneR25ublRv379lzZcjh49iomJSZ7Plz6b+GX3OSwsjDFjxnDmzBns7Oz4/PPPdZ6IPO/8+fMMGTKEs2fPEhcXh42NDb169WLKlCk5GgYSEhLCkiVL+Pvvv7l37x4nTpygfv36WnmOHj1KeHg4nTt3zna5uVWgjRt/f3+ePHmi9twAuLq6MmzYMFJSUnQGEz98+JDY2FittFKlSlG6dGneffddPvnkE8aOHcutW7fo1KkTNjY2XLx4kSVLltC8eXOZCi6EEEBKSgoGBgaZzj7NL5cuXaJRo0ZUq1Yt0zxPnjzJ8VjJouT54M95kdVs4nRXrlyhXbt2DBkyhJUrV7J7924GDBiAtbW1TnzHdCVLlqRv3740bNgQCwsLTp48ycCBA3n69CnTp0/Pdv0ePXpE8+bN6datm86SLuksLS0LbT26Agu/4O7uTmJiIlWrVqVixYpququrKw8fPlSnjD9v8uTJWFtba22ffPKJun/WrFmsWrWKiIgIPD09qVWrFmPGjKFu3br069evoC5FCCFea25ubgwbNoxRo0ZRvnx59Yfs+UdNKSkpDBs2DGtra4yMjLC3t2fGjBmZljllyhSsra05depUhvsdHBzYsGEDv/zyCxqNRu0d0Gg0LF68mA8++AATExM1RuAff/xBw4YNMTIywsnJiS+//JLU1FS1vAcPHjBgwAAsLS0pXbo0rVq14uTJk1le94QJE3B2dqZUqVI4OTnxxRdfaA1dOHnyJO7u7piZmVG6dGkaNWrEsWPHALh27RodOnSgTJkymJiYUKtWLbZs2aIe+7///Y+2bdtiampKxYoV6dOnD3fu3AHAx8eHvXv38uOPP6qPWa5evZrpfXq+d0ej0bBs2TI6depEqVKlqFatGps2bcryOrNryZIlODo68v3331OjRg2GDRtGly5dmDNnTqbHODk54evrS7169bC3t+eDDz7A29tbncyTXX369GHy5Ml4eHjk9TLyRYE1bhwcHFAUhdDQUIYPH46TkxOGhoY0b96c9u3bs3DhQjWfRqNh5syZKIqitdWsWZOffvqJoKAgtdxPPvmEffv28fDhQx49esSpU6eYPHkyS5YsKahLEUKI196KFSswMDDgwIEDGX4fzps3j02bNrF27VrOnz/PypUrcXBw0MmnKArDhw/nl19+ITw8nLp162Z4vqNHj+Ll5UW3bt2IiYnhxx9/VPdNnTqVTp06cfr0afz8/AgPD6dv376MHDmSs2fPqt/rzwdH7tq1K7dv32br1q38/fffNGzYkNatW3Pv3r1Mr9nMzIygoCDOnj3Ljz/+yNKlS7V+yL29valUqRJHjx7l77//5tNPP1V7kfz9/UlOTmbfvn2cPn2aWbNmYWpqCjxraLVq1YoGDRpw7Ngxtm3bxr///ku3bt0A+PHHH2nSpAkDBw4kJiaGmJiYHE1U+fLLL+nWrRunTp3i/fffx9vbO8vrzK5Dhw7pNC48PT05dOhQtsu4ePEi27Zt03ri8iYqsMdSAFevXqVZs2ZYWFjw7bffUqdOHZ48ecL27dvx9/fn3LlzANjZ2REYGEiPHj3UYw8fPkxsbGyGzypftpKxEEIUN9WqVWP27NmZ7r9+/TrVqlWjefPmaDQa7O3tdfKkpqbSu3dvTpw4wf79+9XZqhmxtLTE0NAQY2NjncclvXr1wtfXV33t5+fHp59+qvawOzk58dVXX/HJJ58wZcoU9u/fz5EjR7h9+zaGhoYAfPfdd2zcuJH169czaNCgDOvw+eefq//v4ODAuHHjCA4OVnv8r1+/zvjx46levbp6j56/H507d6ZOnTpqndItWLCABg0aaD2WWb58OXZ2dly4cAFnZ2cMDAwoVapUrh79+fj40LNnTwCmT5/OvHnzOHLkCF5eXjku63mxsbFaT0oAKlasSHx8PImJieoEnYw0bdqU48ePk5yczKBBg5g2bVqe6vKqFWjj5uOPP0aj0XDkyBGtRkqtWrXw8/NTX3t7ezNnzhxu3Lihtn6XL1+Ot7c3v/zyi0652Xn2KIQQxUmjRo2y3O/j40ObNm1wcXHBy8uL9u3b895772nlGT16NIaGhhw+fJjy5cur6dOnT9f6oT979qzWMh4veuutt7Renzx5kgMHDmj11KSlpZGUlMTjx485efIkCQkJOqtCJyYmcunSpUzPs2bNGubNm8elS5dISEggNTVVa0bsmDFjGDBgAL/++iseHh507dpVDfczYsQIhg4dyo4dO/Dw8KBz585qL9XJkycJDQ1Ve3Ked+nSJZydnTOtU3Y83xtmYmJC6dKl1bAD2fV83Xr37p3npxdr1qzh4cOHnDx5kvHjx/Pdd99pDQt50xTYY6l79+6xbds2/P39M+x9eX5mU8WKFfH09GTFihUAPH78mDVr1mg1gIQQQmTuZTNyGjZsyJUrV/jqq69ITEykW7dudOnSRStPmzZtuHXrFtu3b9dKHzJkCJGRkepmY2OTo7okJCTw5ZdfapVx+vRpoqOjMTIyIiEhAWtra639kZGRnD9/Xmu27fMOHTqEt7c377//Pps3b+bEiRNMmjSJlJQUNc/UqVM5c+YM7dq1Y8+ePdSsWZPff/8dgAEDBnD58mX69OnD6dOneeutt5g/f75a3w4dOujUJzo6mpYtW2Z57dnx4gBrjUbD06dPc1TG8/VK72WxsrLi33//1cr377//Urp06Sx7beDZE5SaNWvSs2dPZs6cydSpU0lLS8tRnV4nBdZzc/HiRRRFUbsDX8bPz4+xY8cyadIk1q9fT5UqVXSmkaWbMGGCVnckwNatW2nRQne6ZnJyMsnJyeprCb8ghCiuSpcuTffu3enevTtdunTBy8uLe/fuqTNYPvjgAzp06ECvXr3Q09NThwqULVs2T7NcGjZsyPnz56latWqm+2NjY9HX189wHFBGDh48iL29PZMmTVLTrl27ppPP2dkZZ2dnRo8eTc+ePQkMDKRTp07Asx/0IUOGMGTIECZOnMjSpUsZPnw4DRs2ZMOGDTg4OKCvn/HPpIGBwSv98c/oXjZp0kRrUDTAzp07adKkSY7Kfvr0KU+ePOHp06d5iu/0KhVYz01OVxRu164dCQkJ7Nu3j+XLl2fZazN+/HidFvWL3aDpJPyCEELADz/8wOrVqzl37hwXLlxg3bp1WFlZ6awP1qlTJ3799Vd8fX1Zv359vpx78uTJ/PLLL3z55ZecOXOGqKgogoOD1T9SPTw8aNKkCR07dmTHjh1cvXqVgwcPMmnSJHV204uqVavG9evXCQ4O5tKlS8ybN0/tlYFnj7SGDRtGWFgY165d48CBAxw9epQaNWoAMGrUKLZv386VK1c4fvw4oaGh6j5/f3/u3btHz549OXr0KJcuXWL79u34+vqqDRoHBwciIiK4evUqd+7cyXHPS0EYMmQIly9f5pNPPuHcuXMsWrSItWvXMnr0aDXPggULaN26tfp65cqVrF27lqioKC5fvszatWuZOHEi3bt3z9EU/nv37hEZGcnZs2eBZ+vnREZG6izvUlgKrOemWrVqaDQaddDwSyuir0+fPn2YMmUKERERWm/SF6WvZJwdEn5BCJFX+bWo3qtkZmbG7NmziY6ORk9Pj7fffpstW7ZQooTu37hdunTh6dOn9OnThxIlSvDRRx/l6dyenp5s3ryZadOmMWvWLEqWLEn16tUZMGAA8OyxzJYtW5g0aRK+vr78999/WFlZ0bJlS50Bsuk++OADRo8ezbBhw0hOTqZdu3Z88cUXTJ06FQA9PT3u3r1L3759+ffffylfvjwfffQRX375JfBszI+/vz83b96kdOnSeHl5qTOtbGxsOHDgABMmTOC9994jOTkZe3t7vLy81Ps1btw4+vXrR82aNUlMTOTKlSvZ7nUqKI6Ojvz111+MHj2aH3/8kUqVKrFs2TKtNW7u3LmjNY5JX1+fWbNmceHCBRRFwd7enmHDhmk1iMLCwnB3d8/yGjdt2qQ1iDy912/KlCnqv0mhUgqQl5eXYmtrqyQkJOjsu3//vqIoimJvb6/MmTNHURRFOXv2rAIo3bt3V/OZm5srgYGB6uvn8+dGXFycAihxcXG5LkMIUTQlJiYqZ8+eVRITE191VYRQ5fV3L6+WL1+uVK1aVUlJSclzWaGhoQqgtgFelNVnMCe/3wX2WApg4cKFpKWl8c4777Bhwwaio6OJiopi3rx5GT4DrFGjBnfu3CEwMDDLctNXMn5+k7E0QgghiqoJEyZgampKXFxcoZ97y5YtTJ8+Pc8rTdeqVYu2bdvmU62yVqBTwZ2cnDh+/DjffPMNY8eOJSYmBktLSxo1asTixYszPObFqYAZmTx5MpMnT9ZKGzx4sCzkJ4QQosjZu3evuvLyq1jTbd26dflSzpYtW9TrKOgg1hpFyeHI3zdcfHw85ubmxMXFSYRwIYSWpKQkrly5gqOjI0ZGRq+6OkIUO1l9BnPy+52nx1I+Pj5qXI3nt/RVFtNDKxw+fFjruFGjRuHm5qa+njp1qnps+lTA0aNHk5CQADxb6Vij0RAZGalTBzc3N0aNGpWXyxBCCCFEEZLnx1JeXl46Y2TSl88GMDIyYsKECezduzfLcmrVqsWuXbtITU3lwIED+Pn58fjxY3766ae8VlEIIYQQxUieGzeGhoZZhkIYNGgQS5YsYcuWLbz//vuZV0RfXy2ne/fu7N69m02bNhVY4+ZKXQfMMpgCmRtOl+/kSzlCCCGEyLsCnS0Fz+bdp6/+mJNFjoyNjbWW0RZCCCGEyI48N242b96Mqamp1vZ8gDV4Frn1ypUrrFy5Mltl/v3336xatYpWrVpppTdt2lTnXOHhWS+ulZycTHx8vNYmhBBCiKIrz4+l3N3ddaZ1vxiDxNLSknHjxjF58mS6d++eYTmnT5/G1NSUtLQ0UlJSaNeuHQsWLNDKs2bNGnV57HTe3t5Z1m/GjBnqipTPczx1VWZLCSFEDgUFBTFq1CgePHiQr3mft3HjRsaNG8eVK1cYPnw4c+fOzVVdRfGV58aNiYlJtkIhjBkzhkWLFrFo0aIM97u4uLBp0yb09fWxsbHBwMBAJ4+dnZ3OuV4W6VTCLwghRP7p3r17luMn88PgwYPx9fVlxIgRr2Rdl1fl6tWrODo6cuLEiUwDR4vsKdBF/J5namqqxv344IMPdPYbGBhkO15UThgaGmrN3hJCiJy67FS+UM/3uk5SePLkCcbGxi/9ozIvEhISuH37Np6entjY2GSYJy0tDY1Gk2FcLCEgH8bcJCcn64RCuHMn4w/moEGDMDc3Z9WqVXk9rRBCiP/Pzc2NESNG8Mknn1C2bFmsrKx0ghVev36dDz/8EFNTU0qXLk23bt34999/My0zfX2xNWvW4OrqipGREStXriQoKEgrkvjJkydxd3fHzMyM0qVL06hRo0wjef/333+89dZbdOrUieTkZJ39YWFhak9Nq1at0Gg0hIWFqefctGkTNWvWxNDQkOvXr5OcnMy4ceOwtbXFxMSEd999l7CwMK0y9+/fT4sWLTA2NsbOzo4RI0bw6NGjTK/70qVLfPjhh1SsWBFTU1Pefvttdu3apZVn0aJFVKtWDSMjIypWrEiXLl3UfevXr6dOnToYGxtTrlw5PDw8tM63bNkyatSogZGREdWrV9d6muHo6AhAgwYN0Gg0WuvBiZzJc+Nm27ZtWFtba23NmzfPMG/JkiX56quvSEpKyutphRBCPGfFihWYmJgQERHB7NmzmTZtGjt37gTg6dOnfPjhh9y7d4+9e/eyc+dOLl++nOkYyOd9+umnjBw5kqioKK3o0um8vb2pVKkSR48e5e+//+bTTz/NMAbRjRs3aNGiBbVr12b9+vUZ9qg3bdqU8+fPA7BhwwZiYmJo2rQpAI8fP2bWrFksW7aMM2fOUKFCBYYNG8ahQ4cIDg7m1KlTdO3aFS8vL6Kjo4FnDRUvLy86d+7MqVOnWLNmDfv372fYsGGZXm9CQgLvv/8+u3fv5sSJE3h5edGhQweuX78OwLFjxxgxYgTTpk3j/PnzbNu2jZYtWwIQExNDz5498fPzIyoqirCwMD766CPSAwGsXLmSyZMn88033xAVFcX06dP54osvWLFiBQBHjhwBYNeuXcTExBASEvLSfx+RiTyF93wDSVRwIURmMotIfMmxXKFuOeXq6qo0b95cK+3tt99WJkyYoCiKouzYsUPR09NTrl+/ru4/c+aMAihHjhzJsMwrV64ogDJ37lyt9MDAQMXc3Fx9bWZmpgQFBWVYRnrec+fOKXZ2dsqIESOUp0+fZnkt9+/fVwAlNDRUqxxAiYyMVNOuXbum6OnpKbdu3dI6vnXr1srEiRMVRVGU/v37K4MGDdLaHx4erpQoUSJHkd9r1aqlzJ8/X1EURdmwYYNSunRpJT4+Xiff33//rQDK1atXMyynSpUqyqpVq7TSvvrqK6VJkyaKovzfPT9x4kS261bUvJZRwWNjYxk+fDhOTk4YGhpiZ2dHhw4d2L17d4ZhGp7f0rsSb968iYGBAbVr187wHHv37qVVq1aULVuWUqVKUa1aNfr16ydr4gghirW6detqvba2tub27dsAREVFYWdnpzWZombNmlhYWBAVFZVluW+99VaW+8eMGcOAAQPw8PBg5syZXLp0SWt/YmIiLVq04KOPPuLHH39Eo9Go+2rVqqUu6/GyaNEGBgZa13j69GnS0tJwdnbWWh5k7969ah1OnjxJUFCQ1n5PT0+ePn3KlStXMjxPQkIC48aNo0aNGlhYWGBqakpUVJTac9OmTRvs7e1xcnKiT58+rFy5ksePHwNQr149WrduTZ06dejatStLly7l/v37ADx69IhLly7Rv39/rfp8/fXXOvdM5F2+DSi+evUqzZo1w8LCgm+//ZY6derw5MkTtm/fzsCBA4mJiVHzjhw5kvj4eK2wDenTx4OCgujWrRv79u0jIiKCd999V81z9uxZvLy8GD58OPPmzcPY2Jjo6Gg2bNhAWlpafl2KEEK8cV58FKTRaHK0cGpmTExMstw/depUevXqxV9//cXWrVuZMmUKwcHBdOrUCXg2qcPDw4PNmzczfvx4bG1t1WOfjxL9skHKxsbGWg2jhIQE9PT0+Pvvv9HT09PKa2pqquYZPHgwI0aM0CmvcuXKGZ5n3Lhx7Ny5k++++46qVatibGxMly5d1D+gzczMOH78OGFhYezYsYPJkyczdepUjh49ioWFBTt37uTgwYPs2LGD+fPnM2nSJCIiIihVqhQAS5cu1fpdA3TqL/Iu3xo3H3/8MRqNhiNHjmh9GGrVqoWfn5/WADRjY2OSk5N1wjYoikJgYCCLFi2iUqVKBAQEaL0JduzYgZWVFbNnz1bTqlSpogbqFEIIoatGjRrcuHGDGzduqL03Z8+e5cGDB9SsWTPP5Ts7O+Ps7Mzo0aPp2bMngYGBauOmRIkS/Prrr/Tq1Qt3d3fCwsLUWVD29va5PmeDBg1IS0vj9u3btGjRIsM8DRs25OzZszmaiXvgwAF8fHzU+ickJHD16lWtPPr6+nh4eODh4cGUKVOwsLBgz549fPTRR2g0Gpo1a0azZs2YPHky9vb2/P7774wZMwYbGxsuX76c6fps6UugyB/reZcvj6Xu3bvHtm3b8Pf3z7CV/3zDJiuhoaE8fvwYDw8PevfuTXBwsNYocysrK2JiYti3b1+26yYrFAshijsPDw/q1KmDt7c3x48f58iRI/Tt2xdXV9eXPnbKSmJiIsOGDSMsLIxr165x4MABjh49qrPYqp6eHitXrqRevXq0atWK2NjYvF4Szs7OeHt707dvX0JCQrhy5QpHjhxhxowZ/PXXXwBMmDCBgwcPMmzYMCIjI4mOjuaPP/7IckBxtWrVCAkJITIykpMnT9KrVy+tHrDNmzczb948IiMjuXbtGr/88gtPnz7FxcWFiIgIpk+fzrFjx7h+/TohISH8999/6v348ssvmTFjBvPmzePChQucPn2awMBAfvjhBwAqVKiAsbEx27Zt499//yUuLi7P96m4ypfGzcWLF1EUherVq+epnICAAHr06IGenh61a9fGycmJdevWqfu7du1Kz549cXV1xdramk6dOrFgwYIsGywzZszA3Nxc3WQBPyFEcaPRaPjjjz8oU6YMLVu2xMPDAycnJ9asWZOncvX09Lh79y59+/bF2dmZbt260bZt2wxXhdfX12f16tXUqlWLVq1aqeOB8iIwMJC+ffsyduxYXFxc6NixI0ePHlUfOdWtW5e9e/dy4cIFWrRoQYMGDZg8eXKm6+cA/PDDD5QpU4amTZvSoUMHPD09adiwobrfwsKCkJAQWrVqRY0aNViyZIl6XaVLl2bfvn28//77ODs78/nnn/P999+r44kGDBjAsmXLCAwMpE6dOri6uhIUFKROAdfX12fevHn89NNP2NjY8OGHH+b5HhVXGkX5/3PU8iAiIoLGjRsTEhKiduVlxcfHhwcPHrBx40Y17cGDB1hbW7N//34aNWoEwHfffccff/yhEz/q1q1b7Nmzh4iICEJCQtDT0+PIkSNYW1vrnCs5OVlrPYX0FYrj4uIk/IIQQktSUhJXrlzB0dERIyOjV10dIYqdrD6D8fHxmJubZ+v3O196bqpVq4ZGo+HcuXO5LmPVqlUkJSXx7rvvoq+vj76+PhMmTGD//v1cuHBBK6+trS19+vRhwYIFnDlzhqSkJJYsWZJhuYaGhpQuXVprE0IIIUTRlS+Nm7Jly+Lp6cnChQszXPkxO0HTAgICGDt2LJGRkep28uRJWrRowfLlyzM9rkyZMlhbW2e54qQQQgghio98W+dm4cKFpKWl8c4777Bhwwaio6OJiopi3rx5NGnSJMtjIyMjOX78OAMGDKB27dpaW8+ePVmxYgWpqan89NNPDB06lB07dnDp0iXOnDnDhAkTOHPmDB06dMivSxFCCCHEGyzfGjdOTk4cP34cd3d3xo4dS+3atWnTpg27d+9m8eLFWR4bEBBAzZo1MxyQ3KlTJ27fvs2WLVt45513SPh/7d19VFP3GQfwb4gk8hoobwG1iYIoUlLBHZFaxRYUXNei06kTFaxvpXXUCtR51gq13UTXKtVxbLdRcF2Vg+1ptdU5Ki0ci6hIASegvBiwPQ2oTBwMqwjP/nDcGgmYQEIkPJ9z7oHc+8vvPvc5l5uH+5JfWxteeOEF+Pv7IzQ0FKdOncJnn32G0NBQY20KY4wxxoYwo9xQPJQYckMSY2x44RuKGTOvh+qG4gcNrdA9Ou2nn36KadOmQSaTwcHBAf7+/tiwYYPQz/2jzfZl4sSJkEqlRvm+BMYYu9cw+5+PsYeGsf72jFLcaDQaYUpLS4Ojo6PWvMTEROTl5WHx4sVYsGABzpw5g5KSEvz+978XvnrbEN988w1u3ryJhQsXCqOpMsbYQHUPYdA9VhBjbHB1/+3pGlneEEYZfuHeYRRkMhlEIlGPoRU+//xzTJ8+HUlJScI8X19fzJs3z+D1ZWRkYOnSpQgNDcXLL7+MTZs2GdyHWqWEg5VRxw3t07hL1wZtXYyx/hGLxXBychK+YM7W1lZrPCPGmGkQEdrb23HlyhU4OTkNeLwto40t9SByuRz79+/H+fPnex3xWx+tra04ePAgTp8+jYkTJ+LGjRs4ceJEr2OL6PoSP8YY6033P2bG+AZdxphhnJycepwc6Y9BK25+85vf4MSJEwgICIBCocC0adMwZ84cREdHQyqV6t1PdnY2xo8fD39/fwDAkiVLkJGR0Wtxs23bNp1fBT72XD3fUMwY60EkEsHT0xPu7u79umzOGOsfa2tro42QPmjFjZ2dHY4cOYK6ujp8/fXXOHXqFBISEvDuu++iqKhIGA7+QT744AMsW7ZMeL1s2TKEhoZiz549cHBw6NF+8+bN2Lhxo/C6e/gFxhjri1gsNtqBljE2uAbvppP/8/b2FgYP+/bbb1FZWan34G2VlZU4deoUXn31VWGIhmnTpqG9vR3Z2dk638PDLzDGGGPDy6AXN/dSKpWwtbXVe+iEjIwMzJw5E+Xl5VrDNGzcuBEZGRkmjpYxxhhjQ8GgXZZKSUlBe3s7fv7zn0OhUKClpQW7d+9GR0cHZs+eLbTr7OxEWVmZ1nulUil8fHzw4YcfYuvWrT1uSF69ejV27tyJiooK4V4cxhhjjA1Pg1bchIaGIj09HStWrEBTUxOcnZ0RGBiI3NxcTJgwQWjX1taGwMBArfd6e3tj+/btaG5uxvz583v07efnBz8/P2RkZGDnzp19xtH9BUH81BRjjDE2dHR/buvzRX/DbviFS5cuwdvb29xhMMYYY6wfvvvuO4wePbrPNoN25uZh8cgjjwAALl++DJlMZuZohp/up9W+++47vrl7kHHuzYvzb16cf/MxVu6JCK2trfDy8npg22FX3Fj9/1uJZTIZ7+BmxE+umQ/n3rw4/+bF+TcfY+Re35MSZn1aijHGGGPM2Li4YYwxxphFGXbFjVQqRXJyskFDPjDj4fybD+fevDj/5sX5Nx9z5H7YPS3FGGOMMcs27M7cMMYYY8yycXHDGGOMMYvCxQ1jjDHGLAoXN4wxxhizKBZR3KSnp0OpVGLkyJEIDg7GmTNn+mx/8OBBTJw4ESNHjkRAQACOHj2qtZyIsGXLFnh6esLGxgbh4eGoqakx5SYMWcbOfWxsLEQikdYUGRlpyk0Y0gzJf0VFBRYsWAClUgmRSIS0tLQB9zmcGTv3KSkpPfb9iRMnmnALhjZD8v+Xv/wFM2bMgLOzM5ydnREeHt6jPR/3DWPs/Bv92E9DXHZ2NkkkEvrggw+ooqKC1qxZQ05OTtTU1KSzfWFhIYnFYtqxYwdVVlbSa6+9RtbW1vSvf/1LaJOamkoymYw+++wzKi8vp+eee47Gjh1LN2/eHKzNGhJMkfuYmBiKjIwkjUYjTP/+978Ha5OGFEPzf+bMGUpMTKQDBw6QXC6nXbt2DbjP4coUuU9OTiZ/f3+tff/q1asm3pKhydD8L126lNLT06m0tJSqqqooNjaWZDIZff/990IbPu7rzxT5N/axf8gXN1OnTqWXXnpJeN3Z2UleXl60bds2ne0XLVpEzzzzjNa84OBgWrduHRERdXV1kVwupz/+8Y/C8paWFpJKpXTgwAETbMHQZezcE93dwaOiokwSr6UxNP/3UigUOj9gB9LncGKK3CcnJ9Pjjz9uxCgt10D30zt37pCDgwPt27ePiPi4byhj55/I+Mf+IX1Z6vbt2ygpKUF4eLgwz8rKCuHh4SgqKtL5nqKiIq32ABARESG0V6vVaGxs1Gojk8kQHBzca5/DkSly3y0/Px/u7u6YMGEC4uLi0NzcbPwNGOL6k39z9GmJTJmnmpoaeHl5Ydy4cYiOjsbly5cHGq7FMUb+29vb0dHRIQykzMd9/Zki/92Meewf0sXNtWvX0NnZCQ8PD635Hh4eaGxs1PmexsbGPtt3/zSkz+HIFLkHgMjISPztb39DXl4etm/fjoKCAsydOxednZ3G34ghrD/5N0eflshUeQoODkZWVhaOHTuGvXv3Qq1WY8aMGWhtbR1oyBbFGPnftGkTvLy8hA9oPu7rzxT5B4x/7B92o4Kzh9uSJUuE3wMCAqBSqeDt7Y38/HyEhYWZMTLGTGvu3LnC7yqVCsHBwVAoFMjJycGqVavMGJllSU1NRXZ2NvLz8zFy5EhzhzPs9JZ/Yx/7h/SZG1dXV4jFYjQ1NWnNb2pqglwu1/keuVzeZ/vun4b0ORyZIve6jBs3Dq6urqitrR140BakP/k3R5+WaLDy5OTkBF9fX9737zOQ/L/99ttITU1Fbm4uVCqVMJ+P+/ozRf51Geixf0gXNxKJBFOmTEFeXp4wr6urC3l5eQgJCdH5npCQEK32APDll18K7ceOHQu5XK7V5j//+Q9Onz7da5/DkSlyr8v333+P5uZmeHp6GidwC9Gf/JujT0s0WHlqa2tDXV0d7/v36W/+d+zYgTfffBPHjh3Dz372M61lfNzXnynyr8uAj/1GuzXZTLKzs0kqlVJWVhZVVlbS2rVrycnJiRobG4mIaPny5fTb3/5WaF9YWEgjRoygt99+m6qqqig5OVnno+BOTk506NAhOnfuHEVFRfEjgToYO/etra2UmJhIRUVFpFar6fjx4xQUFETjx4+nH3/80Szb+DAzNP+3bt2i0tJSKi0tJU9PT0pMTKTS0lKqqanRu092lylyn5CQQPn5+aRWq6mwsJDCw8PJ1dWVrly5Mujb97AzNP+pqakkkUjo448/1nrUuLW1VasNH/f1Y+z8m+LYP+SLGyKiPXv20KOPPkoSiYSmTp1Kp06dEpaFhoZSTEyMVvucnBzy9fUliURC/v7+dOTIEa3lXV1d9Prrr5OHhwdJpVIKCwujixcvDsamDDnGzH17ezvNmTOH3NzcyNramhQKBa1Zs4Y/WPtgSP7VajUB6DGFhobq3Sf7ibFzv3jxYvL09CSJREKjRo2ixYsXU21t7SBu0dBiSP4VCoXO/CcnJwtt+LhvGGPm3xTHfhERUf/O+TDGGGOMPXyG9D03jDHGGGP34+KGMcYYYxaFixvGGGOMWRQubhhjjDFmUbi4YYwxxphF4eKGMcYYYxaFixvGGGOMWRQubhizcPn5+RCJRGhpaTF3KCgsLERAQACsra0xb948nW2USiXS0tIGNS7GmGXh4oYxE4mNjYVIJOoxmXIgxFmzZmHDhg1a85544gloNBrIZDKTrVdfGzduxOTJk6FWq5GVlaWzTXFxMdauXTu4gfUhKysLTk5O5g5DUF9fD5FIhLKyMnOHwthDi4sbxkwoMjISGo1Gaxo7dmyPdrdv3zZZDBKJBHK5HCKRyGTr0FddXR2efvppjB49uteCwc3NDba2toMbGGPMonBxw5gJSaVSyOVyrUksFmPWrFlYv349NmzYAFdXV0RERAAAdu7ciYCAANjZ2WHMmDF48cUX0dbWptVnYWEhZs2aBVtbWzg7OyMiIgLXr19HbGwsCgoK8O677wpnierr63Velvrkk0/g7+8PqVQKpVKJd955R2sdSqUSf/jDH/D888/DwcEBjz76KP785z/3ua23bt1CfHw83N3dMXLkSDz55JMoLi4G8NPZhubmZjz//PMQiUS9nrm5/7KUSCTCX//6V8yfPx+2trYYP348Dh8+DODuaMSjR4/G3r17tfooLS2FlZUVGhoaAAAtLS1YvXo13Nzc4OjoiKeffhrl5eVC+/Lycjz11FNwcHCAo6MjpkyZgrNnzyI/Px8rV67EjRs3hJympKQIcb711ltYsWIF7O3toVAocPjwYVy9ehVRUVGwt7eHSqXC2bNntWL75ptvMGPGDNjY2GDMmDGIj4/Hf//7X71z310cBwYGQiQSYdasWTrzeP36dURHR8PNzQ02NjYYP348MjMzAei+VFlWVibsM8BPZ6y++OILTJgwAba2tli4cCHa29uxb98+KJVKODs7Iz4+Hp2dnTpjYMxs+j0qFWOsTzExMRQVFaVzWWhoKNnb21NSUhJduHCBLly4QEREu3btoq+++orUajXl5eXRhAkTKC4uTnhfaWkpSaVSiouLo7KyMjp//jzt2bOHrl69Si0tLRQSEkJr1qwRRt29c+cOff311wSArl+/TkREZ8+eJSsrK9q6dStdvHiRMjMzycbGhjIzM4X1KBQKeuSRRyg9PZ1qampo27ZtZGVlJcSpS3x8PHl5edHRo0epoqKCYmJiyNnZmZqbm+nOnTuk0WjI0dGR0tLSSKPRUHt7u85+FAoF7dq1S3gNgEaPHk379++nmpoaio+PJ3t7e2pubiYiosTERHryySe1+khISNCaFx4eTs8++ywVFxdTdXU1JSQkkIuLi9CHv78/LVu2jKqqqqi6uppycnKorKyMbt26RWlpaeTo6NhjJOPuHL333ntUXV1NcXFx5OjoSJGRkZSTk0MXL16kefPmkZ+fH3V1dRERUW1tLdnZ2dGuXbuourqaCgsLKTAwkGJjY/XO/ZkzZwgAHT9+nDQajbAN93vppZdo8uTJVFxcTGq1mr788ks6fPgwEVGPfYLo7r4FgNRqNRERZWZmkrW1Nc2ePZu+/fZbKigoIBcXF5ozZw4tWrSIKioq6PPPPyeJRELZ2dm97heMmQMXN4yZSExMDInFYrKzsxOmhQsXEtHd4iYwMPCBfRw8eJBcXFyE17/+9a9p+vTpvbYPDQ2ll19+WWve/R9kS5cupdmzZ2u1SUpKokmTJgmvFQoFLVu2THjd1dVF7u7utHfvXp3rbWtrI2tra/roo4+Eebdv3yYvLy/asWOHME8mk2kVUbroKm5ee+01rXUBoH/84x9EdPdDWSQSUUNDAxERdXZ20qhRo4RYT5w4QY6OjvTjjz9qrcfb25vef/99IiJycHCgrKwsnfFkZmaSTCbTGee9OdJoNASAXn/9dWFeUVERASCNRkNERKtWraK1a9dq9XPixAmysrKimzdv6uz3/tx3jzBeWlqqM95uzz77LK1cuVLnMn2LGwBaI5OvW7eObG1thQKPiCgiIoLWrVvXZyyMDTa+LMWYCT311FMoKysTpt27dwvLpkyZ0qP98ePHERYWhlGjRsHBwQHLly9Hc3Mz2tvbAdy9dBAWFjagmKqqqjB9+nStedOnT0dNTY3W5QWVSiX8LhKJIJfLceXKFZ191tXVoaOjQ6tfa2trTJ06FVVVVQOK9/5Y7Ozs4OjoKMQyefJk+Pn5Yf/+/QCAgoICXLlyBb/61a8A3L3k1NbWBhcXF9jb2wuTWq1GXV0dgLs3Oq9evRrh4eFITU0V5hsSl4eHBwAgICCgx7zuWMvLy5GVlaUVR0REBLq6uqBWq3X2+6Dc9yYuLg7Z2dmYPHkyXn31VZw8edKg9wOAra0tvL29tbZHqVTC3t5ea56hsTFmalzcMGZCdnZ28PHxESZPT0+tZfeqr6/HL37xC6hUKnzyyScoKSlBeno6gJ9uOLaxsRm02K2trbVei0QidHV1Ddr6DYklOjpaKG7279+PyMhIuLi4AADa2trg6empVWSWlZXh4sWLSEpKAgCkpKSgoqICzzzzDL766itMmjQJn376qUFxdd+wrWted6xtbW1Yt26dVhzl5eWoqanRKiKMkfu5c+eioaEBr7zyCn744QeEhYUhMTERAGBldffQT0RC+46Ojj63rzuOh2m/YKw3XNww9pAoKSlBV1cX3nnnHUybNg2+vr744YcftNqoVCrk5eX12odEInngzZ1+fn4oLCzUmldYWAhfX1+IxeJ+xe7t7Q2JRKLVb0dHB4qLizFp0qR+9WmIpUuX4vz58ygpKcHHH3+M6OhoYVlQUBAaGxsxYsQIrULTx8cHrq6uQjtfX1+88soryM3NxS9/+Uvh5lt9cqqvoKAgVFZW9ojDx8cHEolErz662+kTk5ubG2JiYvD3v/8daWlpwo3Jbm5uAACNRiO05UfLmSXh4oaxh4SPjw86OjqwZ88eXLp0CR9++CHee+89rTabN29GcXExXnzxRZw7dw4XLlzA3r17ce3aNQB3n7Q5ffo06uvrce3aNZ3/USckJCAvLw9vvvkmqqursW/fPvzpT38S/qvvDzs7O8TFxSEpKQnHjh1DZWUl1qxZg/b2dqxatarf/epLqVTiiSeewKpVq9DZ2YnnnntOWBYeHo6QkBDMmzcPubm5qK+vx8mTJ/G73/0OZ8+exc2bN7F+/Xrk5+ejoaEBhYWFKC4uhp+fn9B3W1sb8vLycO3aNeESYX9s2rQJJ0+exPr161FWVoaamhocOnQI69ev17sPd3d32NjY4NixY2hqasKNGzd0ttuyZQsOHTqE2tpaVFRU4IsvvhC2ycfHB2PGjEFKSgpqampw5MiRHk/MMTaUcXHD2EPi8ccfx86dO7F9+3Y89thj+Oijj7Bt2zatNr6+vsjNzUV5eTmmTp2KkJAQHDp0CCNGjAAAJCYmQiwWY9KkSXBzc8Ply5d7rCcoKAg5OTnIzs7GY489hi1btmDr1q2IjY0dUPypqalYsGABli9fjqCgINTW1uKf//wnnJ2dB9SvvqKjo1FeXo758+drXb4TiUQ4evQoZs6ciZUrV8LX1xdLlixBQ0MDPDw8IBaL0dzcjBUrVsDX1xeLFi3C3Llz8cYbbwC4+yWIL7zwAhYvXgw3Nzfs2LGj3zGqVCoUFBSguroaM2bMQGBgILZs2QIvLy+9+xgxYgR2796N999/H15eXoiKitLZTiKRYPPmzVCpVJg5cybEYjGys7MB3L3cdODAAVy4cAEqlQrbt2/HW2+91e/tYuxhI6J7L7oyxhhjjA1xfOaGMcYYYxaFixvGGGOMWRQubhhjjDFmUbi4YYwxxphF4eKGMcYYYxaFixvGGGOMWRQubhhjjDFmUbi4YYwxxphF4eKGMcYYYxaFixvGGGOMWRQubhhjjDFmUbi4YYwxxphF+R/Mil0TiflW9gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# adjust RHS of short constraint\n", "x_rf.lb = 0\n", "x_rf.ub = 0\n", "m.params.OutputFlag = 0\n", "m.optimize()\n", "\n", "# retrieve and display solution data\n", "mask = (abs(df[\"x\"]) > 1e-5) | (x.X > 1e-5)\n", "df2 = pd.DataFrame(\n", " index=df[\"x\"][mask].index,\n", " data={\n", " \"risk-free asset in [-0.3, 1]\": df[\"x\"],\n", " \"no risk-free asset\": x.X[mask],\n", " },\n", ").sort_values(by=[\"risk-free asset in [-0.3, 1]\"], ascending=True)\n", "\n", "axs = df2.plot.barh(color=[\"#0b1a3c\", \"#dd2113\"])\n", "axs.set_xlabel(\"Fraction of investment sum\")\n", "plt.title(\"Minimum Variance portfolios with and without leverage\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "69479db6", "metadata": {}, "source": [ "## Efficient Frontiers\n", "\n", "The efficient frontier reveals the balance between risk and return in investment portfolios. It shows the best-expected return level that can be achieved for a specified risk level.\n", "We compute this by solving the above optimization problem for a sample of admissible risk levels with and without the risk-free asset.\n", "When we restrict investment amounts in the risk-free asset, that is $u_\\text{rf} < 1$, the model may be infeasible for very small risk levels." ] }, { "cell_type": "code", "execution_count": 12, "id": "c79eb869", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:04:35.588758Z", "iopub.status.busy": "2025-01-31T10:04:35.588584Z", "iopub.status.idle": "2025-01-31T10:05:01.330443Z", "shell.execute_reply": "2025-01-31T10:05:01.329778Z" } }, "outputs": [], "source": [ "risks = np.linspace(0, 6, 30)\n", "rf_bnds = [(0, 0), (0, 1), (-0.3, 0), (-1, -0.2)]\n", "\n", "\n", "returns = pd.DataFrame(index=risks)\n", "\n", "# prevent Gurobi log output\n", "m.params.OutputFlag = 0\n", "\n", "for lb, ub in rf_bnds:\n", " name = f\"[{lb}, {ub}]\"\n", " x_rf.LB = lb\n", " x_rf.UB = ub\n", "\n", " r = np.zeros(risks.shape)\n", " # solve the model for each risk level\n", " for i, risk_level in enumerate(risks):\n", " # set risk level: RHS of risk constraint\n", " risk_constr.QCRHS = risk_level**2\n", "\n", " m.optimize()\n", " # check status and store data\n", " if m.Status == gp.GRB.OPTIMAL:\n", " r[i] = m.ObjVal\n", " else:\n", " r[i] = float(\"NaN\")\n", "\n", " returns[name] = r" ] }, { "cell_type": "markdown", "id": "0f3946dc", "metadata": {}, "source": [ "We can display the efficient frontiers for all strategies. We plot the expected returns (on the $y$-axis) against the standard deviation $\\sqrt{x^\\top\\Sigma x}$ of the expected returns (on the $x$-axis)." ] }, { "cell_type": "code", "execution_count": 13, "id": "3da8ed37", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:05:01.332626Z", "iopub.status.busy": "2025-01-31T10:05:01.332416Z", "iopub.status.idle": "2025-01-31T10:05:01.469311Z", "shell.execute_reply": "2025-01-31T10:05:01.468624Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAv6pJREFUeJzs3Xd0VNUWwOHfnZ426Z2EgBIEpDcRKWpo0osgIO0BSlMBpYmUWOCJjyIqoiigWAArCFGaFAUFFBJApAcSSIP0OvW+P4YMpEECCQlwvrVYmlvPnJTZc885e0uyLMsIgiAIgiDcIxSV3QBBEARBEITyJIIbQRAEQRDuKSK4EQRBEAThniKCG0EQBEEQ7ikiuBEEQRAE4Z4ightBEARBEO4pIrgRBEEQBOGeoqrsBtxpVquVuLg4XFxckCSpspsjCIIgCEIpyLJMZmYmAQEBKBQ3fjZz3wU3cXFxBAUFVXYzBEEQBEG4BbGxsVSrVu2Gx9x3wY2Liwtg6xy9Xl+u1zaZTGzdupWOHTuiVqvL9dr3GtFXpSf6qvREX5We6KuyEf1VehXVVxkZGQQFBdnfx2/kvgtu8oei9Hp9hQQ3jo6O6PV68cN/E6KvSk/0VemJvio90VdlI/qr9Cq6r0ozpURMKBYEQRAE4Z4ightBEARBEO4pIrgRBEEQBOGect/NuSkti8WCyWQq0zkmkwmVSkVeXh4Wi6WCWnZvEH1Vevd7X2k0mpsu+xQEQbieCG4KkWWZhIQE0tLSbulcPz8/YmNjRQ6dmxB9VXr3e18pFApq1KiBRqOp7KYIgnCXEMFNIfmBjY+PD46OjmV6M7FarWRlZeHs7Cw+ad6E6KvSu5/7Kj/pZnx8PMHBwfdlcCcIQtmJ4OY6FovFHth4enqW+Xyr1YrRaESn0913b0JlJfqq9O73vvL29iYuLg6z2SyW4AqCUCr331/KG8ifY+Po6FjJLREEIV/+cNT9ON9IEIRbI4KbYohH34JQdYjfR0EQykoEN4IgCIIg3BZrRgbm+Lhi95nj47BmZNzR9ojgRhAEQRCEW2bNyCB+RH/iBvbAHHepwD5z3CXiBvYgfkT/OxrgiODmPrR69Wrc3NxuepwkSfz4448V3p7bUdrXUtZjr/fjjz/y4IMPolQqmThxYpnPFwRBuJdZs7OwJF/BHHOeuEE9MSfEA2BOiLd9HXMeS/IVrNlZd6xNIri5Dw0YMIBTp07Zv547dy6NGjWqtPbcThBV+LVUhOeff55+/foRGxvLG2+8UaH3qkrOnz+PJElERkZWdlMEQajCVP4BBHy1AVVwCOaY88QP7YsmKYGEkc9gjjmPKjjEtt8/4I61SQQ39yEHBwd8fHwquxm3zWQyVfhrycrKIikpiU6dOhEQEICLi0uRYywWC1artcLaIAiCUNUp/QNwnzQdycEB+UI0fpu+xRwbcy2wCQi8o+0Rwc1NyLJMdk5uqf/l5OSV6fgb/ZNluVRt3LRpE25ubvalspGRkUiSxPTp0+3HjBo1imeffRYoODyzevVqwsPDiYqKQpIkJEli9erV9vOuXLlC7969cXR0pFatWmzcuLHAvXfv3k2LFi3QarX4+/szffp0zGazfX9ISAhLliwpcE6jRo0IDw8HoGbNmgD07t0bSZIICQkp9jXmP0VYt24d7dq1Q6fT8eWXXxYZaoqKiuLxxx/HxcUFvV5P06ZN+euvv4q95uXLl2nWrBm9e/fGYDAU2b9r1y57MPPEE08gSRK7du2y33Pjxo3UrVsXrVZLTEwMBoOBV155hcDAQJycnGjZsiW7du0qcM3ff/+dNm3a4ODgQFBQEC+++CLZ2dnFtg/g7Nmz9OrVi9DQUPR6Pc2bN2f79u0Fjlm2bBm1atVCp9Ph6+tLv3797Pu+/fZb6tevj4ODA56enoSFhRW43yeffEKdOnXQ6XQ89NBDLFu2zL6vRo0aADRu3BhJkmjfvn2J7RQE4f5kzcwk/fNPuNihFZcnjUHOzUUCFCYTyDI+C5fd8cAGRBK/m8rJzcO3VsdKuXfi6a04OTrc9Lg2bdqQmZnJ4cOHadasGbt378bLy6vAG+vu3buZNm1akXMHDBjAsWPH+OWXX+xvmq6urvb94eHhLFiwgHfeeYf33nuPwYMHc+HCBTw8PLh06RJPPfUUw4cP5/PPP+fEiROMHj0anU7H3LlzS/Ua9+/fj5+fH6tWraJz584olcobHj99+nQWLlxI48aN0el0bNmypcD+wYMH07hxYz788EOUSiWRkZHFJn6LjY2lQ4cOPPLII3z66afF3vfRRx/l5MmT1K5dm++++45HH30UDw8Pzp8/T05ODm+//TaffPIJnp6e+Pj4MGHCBI4fP87atWsJCAjghx9+oHPnzhw9epRatWpx9uxZOnfuzJtvvsnKlSu5fPkyEyZMYMKECaxatarY15uVlUWXLl2YPn06np6efPHFF3Tv3p2TJ08SHBzMX3/9xYsvvsiaNWt49NFHSUlJ4bfffgMgPj6egQMHsmDBAnr37k1mZia//fabPWj+8ssvmT17Nu+//z6NGzfm8OHDjB49GicnJ4YNG8aBAwdo0aIF27dvp169eqL8gSDcw6wZGVizs4odOjLHx6Fwckah19u3Gc+cImPNp2R+vxb56gcmydEJFArMBgPnn59E3enjSXp5XKU8uRHBzT3A1dWVRo0asWvXLpo1a8auXbuYNGkS4eHhZGVlkZ6ezpkzZ2jXrl2Rcx0cHHB2dkalUuHn51dk//Dhwxk4cCAA8+bNY+nSpRw4cIDOnTuzbNkygoKCeP/995EkiYceeoi4uDimTZvG7NmzS5VN19vbGwA3N7di71/YxIkT6dOnT4n7Y2JimDJlCg899BAAtWrVKnLMyZMn6dChA71792bJkiUl5lHRaDT2IS8PD48C7TOZTCxbtoyGDRva77tq1SpiYmIICLD9cXjllVf45ZdfWLVqFfPmzWP+/PkMHjzYPim5Vq1aLF26lHbt2vHhhx+i0+mKtKFhw4bUr1+fjIwM9Ho9b7zxBj/88AMbN25kwoQJxMTE4OTkRLdu3XBxcaF69eo0btwYsAU3ZrOZPn36UL16dQDq169vv/acOXNYuHChvT9r1KjB8ePH+eijjxg2bJj9e+Pp6Vmq740gCHen/NVOluQrRQIRc9wl4gb1ROnphd8nX5P31x9kfPYJufv22I9RPxiKc49+ZKz/AsvFGFQPhgKgCgrGfOYUcYN63vEARwQ3N+HooCPx9NZSHWu1WsnMyMRF71IuafIdHYq+2ZWkXbt27Nq1i5dffpnffvuN+fPns379en7//XdSUlIICAgo9o3+Zho0aGD/fycnJ/R6PUlJSQD8+++/tGrVqkBw0Lp1a7Kysrh48SLBwcFlvt/NNGvW7Ib7J0+ezKhRo1izZg1hYWE8/fTTPPDAA/b9ubm5tGnThkGDBhUZLqtXrx4XLlwAbE/Dfv755xLvo9FoCvTN0aNHsVgshIaGFjjOYDDYS3lERUVx5MgRvvzyS/t+WZaxWq1ER0dTp06dIvfJyspizpw5bNq0icTERMxmM7m5ucTExADQoUMHqlevTs2aNencuTOdO3e2DyM2bNiQJ598kvr169OpUyc6duxIv379cHd3Jzs7m7NnzzJy5EhGjx5tv5/ZbC7w5E4QhHtf4dVO+YFIfmBjjjmPNSOdi13bYUm4mstGocAxrDOuQ0ahqvEA8YN62gKb4BC8P13LkUOH8ft0LZeH9Ll23a833rFJxSK4uQlJkko1NAS24MZiNuHk6HDHawC1b9+elStXEhUVhVqt5qGHHqJ9+/bs2rWL1NTUYp/alEbhIR1Jkso0eVahUBSZO5Rf5uJWODk53XD/3LlzGTRoEJs3b+bnn39mzpw5rF27lt69ewOg1WoJCwtj06ZNTJkyhcDAa58kIiIi7G1zcLjx99zBwaFAUJeVlYVSqeTvv/8uMsTl7OxsP+b555/nxRdfLHK9kgLBV155hW3bthEeHk79+vVxcnKiX79+GI1GAFxcXDh06BC7du1i69atzJ49m7lz53Lw4EHc3NzYtm0b+/btY+vWrbz33nvMnDmT/fv320uMrFixgpYtWxa4582GBgVBuLfkr3bKD2TiBvXEZ+EyEl8YieXqsm5rWiqQisLdA5f+z6J/dgTqwCDbvowMlJ5eAAR8tQHZ2wc4jMrP335dpacXCifnO/ea7tidhAqVP+9m8eLF9kCmffv2/Pe//yU1NZWXX365xHM1Gs0t1e2pU6cO3333HbIs29/o9+7di4uLC9WqVQNsw07x8fH2czIyMoiOji5wHbVaXa51g0JDQwkNDWXSpEkMHDiQVatW2YMbhULBmjVrGDRoEI8//ji7du2yDyPlD93cisaNG2OxWEhKSqJNmzbFHtOkSROOHz/Ogw8+WOrr7t27l2HDhtGtWzf0ej05OTmcP3++wDEqlYqwsDDCwsKYM2cObm5u/Prrr/Tp0wdJkmjdujWtW7dm9uzZVK9enR9++IHJkycTEBDAuXPnGDx4cLH3FjWdBOH+oQoIJOCrDVwa2MMW4Dz9VIH9mocb4Dp0NE7deqHQFfzwp9Dr8V+13j5n5/oPsKqAQAK+3lhkzk5FE6ul7hHu7u40aNCAL7/80r6qpW3bthw6dIhTp07d8MlNSEgI0dHRREZGcuXKlWJXDhVn3LhxxMbG8sILL3DixAk2bNjAnDlzmDx5sv3J1RNPPMGaNWv47bffOHr0KMOGDSvyZCAkJIQdO3aQkJBAamrqrXUAtiGnCRMmsGvXLi5cuMDevXs5ePBgkeEepVLJl19+ScOGDXniiSdISEi45XvmCw0NZfDgwQwdOpTvv/+e6OhoDhw4wPz589m8eTMA06ZNY9++fUyYMIHIyEhOnz7Nhg0bmDBhQonXrVWrFj/88ANHjx4lKiqKQYMGFXhytmnTJpYuXUpkZCQXLlzg888/x2q1Urt2bfbv38+8efP466+/iImJ4fvvv+fy5cv2/ggPD2f+/PksXbqUU6dOcfToUVatWsWiRYsA8PHxwcHBgV9++YXExETS09Nvu58EQaiaLCnJZP6wHjmrYKI9hzaPE/DdLwRu2IFLv4FFApt8Cr2+xCEnlX/AHQ1sQAQ395R27dphsVjswY2Hhwd169bFz8+P2rVrl3he37596dy5M48//jje3t58/fXXpbpfYGAgERERHDhwgIYNGzJmzBhGjhzJa6+9Zj9mxowZtGvXjm7dutG1a1d69epVYA4MwMKFC9m2bRtBQUH2ybC3QqlUkpyczNChQwkNDaV///506dLFvuz8eiqViq+//pp69erxxBNP2OcR3Y5Vq1YxdOhQXn75ZWrXrk2vXr04ePCgfcipQYMG7N69m1OnTtGmTRsaN27M7Nmz7U+OirNo0SLc3d3p1KkTPXv2pFOnTjRp0sS+383Nje+//54nnniCOnXqsHz5cvvr0uv17Nmzh6eeeorQ0FBee+01Fi5cSJcuXQBbeoBPPvmEVatWUb9+fdq1a8fq1avtS8BVKhVLly7lo48+IiAggJ49e952HwmCULUYT/7L5RkTiWndkNSFb2FNTS6w33QhGpWv/11XwFaSS5tM5R6RkZGBq6sr6enp6AtFknl5eURHR1OjRo1iV67cjNVqta9qudNzbu42oq9K737vq7L8XppMJiIiInjqqaeKTQEgXCP6qmzuhv4q7XJu2WolZ+dWMlZ9XGDVExoNGI0og6rju+hDkl4eVzDDcClXO1VUX93o/bswMedGEARBEO5ypVnOrXBzx7lzdzLWrcF84ercR4UCh3ZPYjx+FEtiQoFApvAk4zu52ul2ieBGEARBEO5yN1rOfan/U1jiLkHsBVKOHAZAoXfF5Zkh6IeMROniSvyI/khaXYHA6PoA506vdrpdIrgRBEEQhLtc4eXclwb2wG3kWFLeDkfOzbUdJMuoaz6I6/DncO4zAIXjtdQa1692KnDdSlrtdLtEcCMIgiAI9wBVQCD+n33Lpb6dscReIHnutfqCuhaP4jb2JRzaPI5UzNw9hV5fYvBytwxFXU8EN4IgCIJwl7Okp5Hx5WoyPl+BNeVKgX3ei5fj0rNfCWfem0RwIwiCIAh3KVPMedJXfUTmN18h59gKWKJUwnXJN1MX/xeH5q0qpTp3Zbn/1pUKgiAIQhVkzcjAHB9X7D5zfBzWjAz713mHDpI4bgSxT7Qg47MVyDnZqB+ohcLDCywW26qnbyJQBYfYJxmb4y7dqZdS6URwIwiCIAiVLH8pd9zAHkWCEHPcJeIG9iBu+NNk/rCeS/26ENevC9m//ARWKw5tn8B78UdYjUasKVfsy7l1TVvYVj9dH+CUEDzdayo9uPnggw8ICQlBp9PRsmVLDhw4cMPjlyxZQu3atXFwcCAoKIhJkyaRl5d3h1orCIIgCOWv8FLu/ADHHHeJS890xxxzHuOxKC6/PA7DoYOg0eDcbxDVfv4N/9XrcXq8Ayov7yIJ9/KXc6uCQ+665dy3o1KDm3Xr1jF58mTmzJnDoUOHaNiwIZ06dSoxFf5XX33F9OnTmTNnDv/++y+ffvop69at49VXX73DLb97SJLEjz/+WO7H5ktISKBDhw44OTnh5uZW5vbdD0JCQliyZMltXaNBgwYolUokSSItLa1c2lUWISEhSJJUafcXhHtd/lLu65+yZG//hdin2mK5GGM7yGxG4eaO2/jJBP92GJ8FS9HUttWKyy9eGfD1xiJza/KXc/uvWn9XLee+HZUa3CxatIjRo0czYsQI6taty/Lly3F0dGTlypXFHr9v3z5at27NoEGDCAkJoWPHjgwcOPCmT3vuZ/Hx8fZaQhVh8eLFxMfHExkZyalTpyrsPlVR+/btmThx4k2PO3jwIM8999xt3y88PJz4+HhcXV3t244cOUKbNm3Q6XQEBQWxYMGCMl/3+++/p2PHjnh6eiJJEpGRkUWOOXjwIN99993tNF8QhJvIf8qi9A/AHHOexOeeRc6wFaxVBQbhOfdtgn+PxOPlV1F5+xY5v6oVr6xMlbZaymg08vfffzNjxgz7NoVCQVhYGH/88Uex5zz66KN88cUXHDhwgBYtWnDu3DkiIiIYMmRIifcxGAwFqlxnXJ2QZTKZCpRlz98myzJWq7VA5eXSyi/TlX+NymQ0GtFoNPj4+ACUuj1lfe1nzpyhSZMm9mKYxZ1rMpmK1BepSn11O0rTfk9PT6D034Pi7gHg7OyMj48PsiwjyzIZGRl07NiRJ598kmXLlnH06FFGjRqFXq8vUzCVmZlJ69at6devH88//3yxPwOenp72J3O3+vtxq6xWK7IsYzKZilSULyz/d7rw77ZQlOirsrkT/WWI/JvMj9/Dct28GFmScJs8A5eR45CUSiyApYp/zyqqr8pyvUoLbq5cuYLFYsHXt2D06evry4kTJ4o9Z9CgQVy5coXHHnsMWZYxm82MGTPmhsNS8+fPL7Yq9NatW3F0dCywTaVS4efnR1ZWFkajEbC9sZgsZastmpyaXqbjS6JWSqWuxNqtWzfq1KmDSqVi/fr11K1bl59++gl3d3e++OILunbtitFoZObMmfz000+kpaXh7e3NiBEjmDx5sv06ubm59gBw/vz5fPbZZ3z77bc8/PDDRe7ZoEEDYmNjAVizZg0DBw5k2bJluLu787///Y/t27ezZ88eXnjhBaZPn05ERARvv/02J0+exM/Pj4EDB/Lyyy+jUtl+DNPT05k1axYREREYjUYaNWrEW2+9Rf369Ut83XPmzGHz5s3ExcXh4+PD008/zdSpU+3B1NGjR3n11VeJjIxEkiRq1qzJ4sWLady4MTExMUydOpU///wTk8lEcHAw4eHhdOzYEYDjx48ze/Zs/vzzTxwdHXn88ceZN28enp6ejBs3jt27d7N7926WLl0KQFRUlL0CeOF+Gjt2LGPHjgXA3d2dd999l61bt/Lrr7/i7+/PG2+8wVNPPXXD77HBYLB/bwA+/fRTDAYDixcvRqPREBQUxHPPPceiRYt45plnbnit6+VX+46JsT36zs7OLnCffDk5OYAtGLqTBTyNRiO5ubns2bMHs9lcqnO2bdtWwa26d4i+Kpty7y9ZxuXfo3j9+jPOZ689/U6v35jLT3QhN8T2wZEtW8r3vndAefdV/t+g0rir8tzs2rWLefPmsWzZMlq2bMmZM2d46aWXeOONN5g1a1ax58yYMaPAm3dGRgZBQUF07Nix2KrgsbGxODs726sPG8wWZqzdX3Ev6gYWP9MSrerGn1TzqVQq1q5dy5gxY/j9998B7K/PwcEBvV7PwoUL2bJlC+vWrSM4OJjY2FhiY2ML9IODgwMuLi689NJLbN68mT179vDggw8We8+DBw8ybNgw9Ho9S5Yssd8HYMGCBcybN4/33nsPlUpFVFQUY8eOZcmSJbRp04YzZ87w/PPPo9FomDNnDgD9+vXDwcGBiIgIXF1d+fjjj+nduzcnTpzAw8Oj2DZ4eXmxevVqAgICOHr0KM8//zxeXl5MmTIFgLFjx9KoUSM++ugjlEolkZGRuLm5odfrmTFjBhaLhd27d+Pk5MTx48fR6/Xo9XrS0tLo1asXI0eOZOnSpeTm5jJ9+nRGjx7N9u3b+eCDDzh//jz16tWzB8/e3t7FPllQKBTodLoC/fzOO+/w3//+l0WLFvH+++/z/PPPEx0dXezrzH9yo9VqC1wjMjKStm3b4uXlZd/WvXt33n33XSwWC+7u7sX2WUmcnW0TDZ2cnIqtuJv/YcDFxeWmFXnLU15eHg4ODrRt27ZUVcG3bdtGhw4dqmzl5qpC9FXZlHd/yWYzOREbyPxkGaaTx20bVSpwcMSSl4dbbja1Hn2UyzMnY46NQRUUjN+na1H5+d/2vStaRf1sFfehqySVFtx4eXmhVCpJTEwssD0xMRE/P79iz5k1axZDhgxh1KhRANSvX5/s7Gyee+45Zs6cWeynSa1Wi1arLbJdrVYX6XSLxYIkSSgUCvu1FFLZntqUJ4WkKNMn5Fq1avHOO+8Uvc7V1xMbG0utWrVo27YtkiRRo0aNIsdarVaGDh3K4cOH+f333wkMLDnpk6+vLzqdDkdHRwICCo7zDho0iJEjR9q/HjVqFNOnT2fEiBEA1KxZk1dffZXw8HDCw8P5/fffOXjwIElJSfbv18KFC9mwYQPff/99icMs1we1NWvW5PTp06xdu5Zp06YBtqcRU6ZMoW7dugDUrl3bfnxsbCx9+/alYcOGAAWCuGXLltG4cWPmz59v37Zq1SqCgoI4c+YMoaGhaDQanJycirz24uT/XOUbPnw4gwcPBmxPyN577z3++usvOnfuXOTc/CGgwtdITEykRo0aBbb5+9v+8CUlJdmHw0rL/jOvKP7n7mb7K4pCoUCSpGJ/Z0tSlmPvd6KvyuZm/WXNyCi2RhPYctWgUJK95SfSP1mG+epEYcnJCecefcnZ/SuWuItog0MIWP0NqoBAdKu/sa2eOnOKy0P63FWVucv7Z6ss16q04Eaj0dC0aVN27NhBr169ANsf8R07djBhwoRiz8nJySnyRzX/k3L+p9tyb6dKwbsDW5XqWKtsJTMjExe9Cwrp9v/4a1Rlu0bTpk1vuH/48OF06NCB2rVr07lzZ7p162Yfgsk3adIktFotf/75Z4EnAvPmzWPevHn2r48fP17sEEy+Zs2aFfg6KiqKvXv38tZbb9m3WSwW8vLyyMnJISoqiqysrCJvyLm5uZw9e7bE+6xbt46lS5dy9uxZsrKyMJvNBZ4qTJ48mVGjRrFmzRrCwsJ4+umn7fODXnzxRcaOHcvWrVsJCwujb9++NGjQwN7enTt32p9mXO/s2bOEhoaW2KbSyL8PXHtSUtIqQUEQ7g75uWosyVcKLMcGMJw4TvzAHlizs+Dq8KrC0wvX4c+hf/Y/SJIC44njSCrVPVOZuzJV6rDU5MmTGTZsGM2aNaNFixYsWbKE7Oxs+6f7oUOHEhgYaP/03L17dxYtWkTjxo3tw1KzZs2ie/fuN51oeKskSUKrLt21rVYJg0qBVqW8o59s8zk5Od1wf5MmTYiOjubnn39m+/bt9O/fn7CwML799lv7MR06dODrr79my5Yt9icLAGPGjKF///72r2/2tKJwW7KysggPD6dPnz6ALZDNysqyDwFmZWXh7+/Prl27ilyrpCXmf/zxB4MHDyY8PJxOnTrh6urK2rVrWbhwof2YuXPnMmjQIDZv3szPP//MnDlzWLt2Lb1792bUqFF06tSJzZs3s3XrVubPn8/ChQt54YUXyMrKonv37rz99ttF7pv/dOR2FP4EIklSmSfp+vn5FfvkM3+fIAh3VuFcNQFfbQBJInXpAjLXfwlXP4Qr/QNwGzMRl6cHotA52M+/1ypzV6ZKDW4GDBjA5cuXmT17NgkJCTRq1IhffvnFPsk4JiamQJDw2muvIUkSr732GpcuXcLb25vu3bsXeBog3Jher2fAgAEMGDCAfv360blzZ1JSUuxzPXr06EH37t0ZNGgQSqXSPjHVw8OjxHkvpdGkSRNOnjxpH/qxWq1kZGSg1+tRKBQ0adKEhIQEVCoVISEhpbrmvn37qF69OjNnzrRvu3DhQpHjQkNDCQ0NZdKkSQwcOJBVq1bRu3dvAIKCghgzZgxjxoxhxowZrFixghdeeIEmTZrw3XffERISYp/wXJhGo8FyXf2WO61Vq1bMnDmzwGq0bdu2Ubt27TLPtxEE4fbl56qJG9QTc8x5Yju1Rs7LA8vVifBqNZ6vvoF+8HCkYv6u3GuVuStTpU8onjBhQonDUIU/xatUKubMmWOfgCqUzaJFi/D396dx48YoFAq++eYb/Pz8ijwZ6d27N2vWrGHIkCGoVCr69bv9arKzZ8+mW7duBAcH26/3559/cu7cOd566y3CwsJo1aoVvXr1YsGCBYSGhhIXF8fmzZvp3bt3kWEusM0xiomJYe3atTRv3pzNmzfzww8/2Pfn5uYyZcoU+vXrR40aNbh48SIHDx6kb9++AEycOJEuXboQGhpKamoqO3fupE4dW0Ks8ePHs2LFCgYOHMjUqVPx8PDgzJkzrF27lk8++QSlUklISAj79+/n/PnzODs74+HhcUef2A0aNIjw8HBGjhzJtGnTOHbsGO+++y6LFy8u03VSUlKIiYkhLs62/PTkyZOA7emPeAIkCGVjzUhHU6s25pjzyNlZ9u0Kbx8Cv9+KOrBaJbbu/lHp5ReEO8fFxYUFCxbQrFkzmjdvzvnz54mIiCj2Dblfv3589tlnDBkyhO+///62792pUyc2bdrE1q1bad68OY8++igffvihfd6OJElERETQtm1bRowYQWhoKM888wwXLlwoki4gX48ePZg0aRITJkygUaNG7Nu3r8AEY6VSSXJyMkOHDiU0NJT+/fvTpUsX++omi8XC+PHjqVOnDp07dyY0NJRly5YBtmG3vXv3YrFY6NixI/Xr12fixIm4ubnZ++uVV15BqVRSt25dvL297Uup7xRXV1e2bt1KdHQ0TZs25eWXX2b27NkFJl/v2rULSZI4f/58idfZuHEjjRs3pmvXrgA888wzNG7cmOXLl1f0SxCEe4bhyGESnh/CxafakrOj6LJtv2WrRWBzB0lyRc3EraIyMjJwdXUlPT292KXg0dHR1KhR46ZLTotTeKhFKJnoq9KzWq2EhIQwadIkJk2aVKZzV61axbx58zh+/Phtr1rYtWsXjz/+OKmpqXe01EZZfi9NJhMRERE89dRTYgXQTYi+KpuS+ivv7wOkvr+Q3N07bBskCcfHO2A4fgxLwrVkfIVrPt3LKupn60bv34WJdxVBuEtMnz4dZ2dn0tNLnyQyIiKCefPm3fYfmHr16lVoGQ9BqCqsGRk3rJxtzcxElmVy9+0hbnAv4p5+yhbYKJU49+6P/xc/YDxzCktCnC2g+SaiYFXuQhW/hYpR6XNuBEG4uU2bNqHT6VAoFLi4uJT6vG+++aZc7h8REWFPfX4nE/gJwp10o6Xc5oR4kGXiB/VA7eCEIepv2w61Gpe+z+D2/ItIGi1xA3tgjjlf4EnN9ZOM4wb1vKty1dytRHAjCHeB4ODgSh3Cq169eqXcVxDupOKWcqsCAjFdjCV+QDceUKmxXryAAZA0WlyeGYLb6Amors6lsWZkoPS05QcTuWoqlwhuBEEQBIGiS7kvDeyBvu8zpH6wCEwmHAHJwQH9s//BdeRYVD4FVxMq9HqRq6aKEMGNIAiCIFylCgjEf833XOrTEUvsBVKXXE3kqVCQ9GQXGr3+NjrfklMkiFw1VYMIbgRBEAQBkK1Wsn/eSOq7C7AmXymwz+uTrziano3So2w124TKIVZLCYIgCPc12Wol6+efuPhUO5JeGIXpzCkoNL8ted7sSmqdcCtEcCMIgiDcl2RZJntrBJe6P0HS+BGYTv2L5OyCwtUNrNaCS7ljbUk6zQnxldtooVREcCMIgiDcM26Up8YcH4c1I8MW1Oz4hUs9nyRxzFCM/x5DcnZGP+J5FG5uWNPT7Eu5dU1b2FY+BdmyqSeMfOaGeXCEqkEEN/c4SZL48ccfy/3YfAkJCXTo0AEnJ6c7mrX2bhISEsKSJUtu6xoNGjRAqVQiSRJpaWnl0q7KIEkSkiSJnxWhQuTnqYkb2KNIsjxz3CUuPdOdi306cqn7EySOfhbjsSNITk64jZ9M8J7DeLw0DZW3b5FswqqAQPw+XQuA0sNTLOW+C4jg5h4XHx9foZllFy9eTHx8PJGRkZw6darC7lMVtW/fnokTJ970uIMHDxao93SrwsPDiY+Px9XV9YbH7dq1iyZNmqDVannwwQdZvXr1DY8/efIkjz/+OL6+vuh0OmrWrMlrr71mT9pXWrIsM3v2bPz9/XFwcCAsLIzTp08XOCY+Pv62Az1BKEnhPDX5AY7p0kUu9ratfjKfO4Px+FEkB0fcxrxE8O5DeLz8Kko3d/tS7oCvNxYpk6Dy8wfAd9lnYin3XUAEN/coo9EI2Co7a7XaCrvP2bNnadq0KbVq1cLHx6fYY8r6Jnmv8fb2xtHR8bav4+Ligp+fH5IklXhMdHQ0Xbt25fHHHycyMpKJEycyatQotmwpWsgvn1qtZujQoWzdupWTJ0+yZMkSVqxYwZw5c8rUvgULFrB06VKWL1/O/v37cXJyolOnTuTl5dmP8fPzu2lwJgi3Kj9PTX65g0sDe5C++mNin2yJ9XIiAJJWh+vo8QTv/huPqbOKrH5S6PU3XLKtKEOGcKHyiODmJmRZRrZkl/of1tIfe9N/Zahp2r59eyZMmMDEiRPx8vKiU6dOQMGhJqPRyIQJE/D390en01G9enXmz59f4jXnzJmDv78/R44cKXZ/SEgI3333HZ9//jmSJDF8+HD7PT/88EN69OiBk5MTb731FgAbNmygSZMm6HQ6HnzwQd5++23MZrP9emlpaYwaNQpvb2/0ej1PPPEEUVFRN3zd06ZNIzQ0FEdHR2rWrMmsWbMKBFNRUVE8/vjjuLi4oNfradq0KX/99RcAFy5coHv37ri7u+Pk5ES9evWIiIiwn3vs2DG6dOmCs7Mzvr6+DBkyhCtXbMtDhw8fzu7du3n33XftQy0lVd4uPCwlSRKffPIJvXv3xtHRkVq1arFx48Ybvs7SWr58OTVq1GDhwoXUqVOHCRMm0K9fPxYvXlziOTVr1mTEiBE0bNiQ6tWr06NHDwYPHsxvv/1W6vvKssySJUt47bXX6NmzJw0aNODzzz8nLi6uzEOdgnA78rMBK339sMReIPn1V8FoAEnCpf+zBO35G88Z4Si9vCu7qUIFEnlubsaaQ95e91IfrgWM5XRrXetUUDqV+vjPPvuMsWPHsnfv3mL3L126lI0bN7J+/XqCg4OJjY0lNja2yHGyLPPiiy+yadMmfvvtNx588MFir3fw4EGGDh2KXq/n3XffxcHBwb5v7ty5/Pe//2XJkiWoVCp+++03hg4dytKlS2nTpg2nT5/mueeeQ6vVMnfuXACefvppHBwc+Pnnn3F1deWjjz7iySef5NSpU3h4eBTbBhcXF1avXk1AQABHjx5l9OjRuLi4MHXqVAAGDx5M48aN+fDDD1EqlURGRtqLSI4fPx6j0ciePXtwcnLi+PHjODvbxtLT0tJ44oknGDVqFIsXLyY3N5dp06bRv39/fv31V959911OnTrFww8/zOuvvw7YntCUVnh4OAsWLOCdd97hvffeY/DgwVy4cKHE11laf/zxB2FhYQW2derUqVTDZ/nOnDnDL7/8Qp8+fUp9TnR0NAkJCQXu7erqSsuWLfnjjz945plnSn0tQbgdxpP/krLwLSyJCQW2+y7/HKcOovjr/UIEN/eQWrVqsWDBghL3x8TEUKtWLR577DEkSSq2XpDZbObZZ5/l8OHD/P777wQGBhZzJRtvb2+0Wi0ODg74+RXM2Dlo0CBGjBhh//o///kP06dPZ9iwYYDtacarr75KeHg4c+fO5ffff+fAgQMkJSXZh9H+97//8eOPP/Ltt9+WOGfltddes/9/SEgIr7zyCmvXrrUHNzExMUyZMoWHHnrI3kfX90ffvn2pX78+YHuCke/999+ncePGzJs3z75t5cqVBAUFcerUKUJDQ9FoNDg6OhZ57aUxfPhwBg4cCMC8efNYunQpBw4coHPnzmW+1vUSEhLw9fUtsM3X15eMjAxyc3MLBKCFPfrooxw6dAiDwcBzzz1nD9pKe9/8exW+d/4+QahIpqvZhLN+/AaKeeqd/NYstPUaFJlLI9ybRHBzMwpH2xOUUrBarWRmZuDiUk4FDhVlm6fRtGnTG+4fPnw4HTp0oHbt2nTu3Jlu3brRsWPHAsdMmjQJrVbLn3/+iZeXl337vHnzCrzRHz9+nODg4BLv1axZswJfR0VFsXfvXvsQFYDFYiEvL4+cnByioqLIysrC07Pg+Hdubi5nz54t8T7r1q1j6dKlnD17lqysLMxmc4Gq1ZMnT2bUqFGsWbOGsLAwnn76aR544AEAXnzxRcaOHcvWrVsJCwujb9++NGjQwN7enTt32p/kXO/s2bOEhoaW2KbSyL8PgJOTE3q9nqSkpDJd4/q2Pfvssyxfvvy22rRu3ToyMzOJiopiypQp/O9//7MHiYJQVZkvJ5L2/iIy1n4OV4ekJQdH5NwcVMEh+CxcRtLL44oUwxTubSK4uQlJkko9NCRJVlBYkJROSJVQvdnJ6cbtbNKkCdHR0fz8889s376d/v37ExYWxrfffms/pkOHDnz99dds2bKFwYMH27ePGTOG/v37278OCLhxjZTCbcnKyiI8PNw+1GG1WsnKysLZ2RmdTkdWVhb+/v7s2rWryLVKWjb8xx9/MHjwYMLDw+nUqROurq6sXbuWhQsX2o+ZO3cugwYNYvPmzfz888/MmTOHtWvX0rt3b0aNGkWnTp3YvHkzW7duZf78+SxcuJAXXniBrKwsunfvzttvv13kvv7+/jd87aWRPzSWT5IkrFZrma4RGRlp///8gM7Pz4/ExMQCxyUmJqLX62/41AYgKCgIgLp162KxWHjuued4+eWXUSqVN21L/tOrxMTEAv2TmJhIo0aNSvNyBMHOmpFRbPFJsOWqUTg5IyOT/tF7pK/+GDk3BwBd81aYYs5jSYwvsJz7+mKYcYN62lZDiTpP9zQR3Nxn9Ho9AwYMYMCAAfTr14/OnTuTkpJin+vRo0cPunfvzqBBg1Aqlfa5Eh4eHrc1H6RJkyacPHnSPn/HarWSkZGBXm97ytWkSRMSEhJQqVSEhISU6pr79u2jevXqzJw5077twoULRY4LDQ0lNDSUSZMmMXDgQFatWkXv3r0B2xv6mDFjGDNmDDNmzGDFihW88MILNGnShO+++46QkBBUquJ/TTQaDRaLpYw9UX6KmwvVqlWrApOiAbZt20arVq3KdG2r1YrJZMJqtZYquKlRowZ+fn7s2LHDHsxkZGSwf/9+xo4dW6Z7C/e3/Fw1luQrRZ6y5OeqwWJBzsrEmpkBgLZRUzymvIa2XkPiR/RH0mqL5KnJD3CUnl4iT819QAQ395FFixbh7+9P48aNUSgUfPPNN/j5+RV5MtK7d2/WrFnDkCFDUKlU9OvX77bvPXv2bLp160ZwcLD9en/++Sfnzp3jrbfeIiwsjFatWtGrVy8WLFhAaGgocXFxbN68md69excZ5gLb/JmYmBjWrl1L8+bN2bx5Mz/88IN9f25uLlOmTKFfv37UqFGDixcvcvDgQfr27QvAxIkT6dKlC6GhoaSmprJz507q1KkD2CYbr1ixgoEDBzJ16lQ8PDw4c+YMa9eu5ZNPPkGpVBISEsL+/fs5f/48zs7OeHh4lM9w5G0YM2YM77//PlOnTuU///kPv/76K+vXr2fz5s32Y95//31++OEHduzYAcCXX36JWq2mfv36aLVa/vrrL2bMmMGAAQOKPGEqiSRJTJw4kTfffJNatWpRo0YNZs2aRUBAAL169aqIlyrcowrnqskPUkwXznOpT0esqSn2Y9WhD+Hx8qs4hnWxp0jwX7W+2Kc+qoBAAr7eiMLJWeSpuQ+I4OY+4uLiwoIFCzh9+jRKpZLmzZsTERFR7Btyv379sFqtDBkyBIVCUaaVM8Xp1KkTmzZt4vXXX+ftt99GrVZTq1YtRo8eDdjeHCMiIpg5cyYjRozg8uXL+Pn50bZt2yKTVPP16NGDSZMmMWHCBAwGA127dmXWrFn21VdKpZLk5GSGDh1KYmIiXl5e9OnTh/DwcMA252f8+PFcvHgRvV5P586d7UumAwIC2Lt3L9OmTaNjx44YDAaqV69O586d7f31yiuvMGzYMOrWrUtubi7R0dGlfupUUWrUqMHmzZuZNGkS7777LtWqVeOTTz6xpwYAuHLlSoF5TCqVirfffptTp04hyzLVq1dnwoQJTJo0yX7Mrl27ePzxx2/4GqdOnUp2djbPPfccaWlpPPbYY/zyyy/odLoKe73CvSc/V03+MNKlgT1w6d2ftGWL4WrqCKV/AB6vvIZzj75IhZ4sKvT6EoMXMRR1H5HvM+np6TIgp6enF9mXm5srHz9+XM7Nzb2la1ssFjk1NVW2WCy328x7nuir0rNYLHJQUJC8aNGiSmvDypUr5QcffFA2Go23fa1Vq1bJrq6upT6+LL+XRqNR/vHHH8ulnfe6qt5XpksX5egWdeWzNTyv/XvAW05Z+o5szcu74+2p6v1VlVRUX93o/bswkcRPEO4S06dPx9nZmfT09Dt+74iICObNm1fqYaqSODs7M2bMmHJqlXCvMhw/yuXpL9mzCufz++xb3F94BakCs64L9wYxLCUId4FNmzah0+lQKBS4VEL692+++aZcrpO/wqs0k5SF+485Po6URfPI+n5dsblqrsycLJZyC6UightBuAsEBwfbV5bdzUrKdi3c36wZGaR9tJT0lcuRDbZaZJKjI3KOyFUj3Jq7+y+lIAiCcNeSTSbSP/+EmCeak/bhEmRDHtqGTVD6+tsDm4CvNqBr2qJAQcy4QT0xx8dVdvOFKkwEN4IgCEK5smZklBh8mOPjsKSnk/3LJi52ak3y3OlYU5JR13wQ348+x2/1N6gCAgsk4YNruWpUwSEiV41wU2JYShAEQSg3N03C17cT1qws5OwsAJSe3ri/NAWXAUOQrk5YF7lqhNslntwIgiAI5aZwEj5z3CUAcg/8QWyHVlgSE5Czs5C0OtwmvEzQzgPon/2PPbABW66aknLSqPwDRGAj3JR4ciMIgiCUmyJJ+AZ0Q9ewCdkRG+zHOHXthefMN1D53X6dNkEoTpV4cvPBBx8QEhKCTqejZcuWHDhwoMRj27dvjyRJRf517dr1Drb47iFJEj/++GO5H5svISGBDh064OTkVGKBy/tdSEgIS5Ysua1rNGjQAKVSiSRJpKWllUu7qor832Hx83PvUAUE4v/5dyjcPbBcirUHNpLOAb/PvsX3vU9EYHOPkc3pyIaLxe8zXEQ239n8XJUe3Kxbt47JkyczZ84cDh06RMOGDenUqRNJSUnFHv/9998THx9v/3fs2DGUSiVPP/30HW753SE+Pp4uXbpU2PUXL15MfHw8kZGRnDp1qsLuUxW1b9+eiRMn3vS4gwcP8txzz932/cLDw4mPj8fV1bXEY+Lj4xk0aBChoaEoFIpSta+08vLyGD9+PJ6enjg7O9O3b98iFcivZzKZmDZtGvXr18fJyYmAgACGDh1KXFzBiabx8fG3HfwJVUvuvj0kPPdsgTpQAP5rvsOxTfvKaZRQYWRzOoaj3TBEhWHNiy2wz5oXiyEqDMPRbnc0wKn0YalFixYxevRoRowYAcDy5cvZvHkzK1euZPr06UWOL1yZeu3atTg6OpYY3BgMBgwGg/3rjAxbFVmTyYTJZCpwrMlkQpZlrFYrVqu1zK9Fvpp0Kv8alcloNKLRaPDx8QEodXvK+trPnDlDkyZNeOCBB0q8j8lkKpLZtir11e0oTfs9PT2B0n8PirsH2LL7+vj4IMuyfVthubm5eHl58eqrr/Luu++Wa/9OnDiRiIgI1q1bh6urKy+++CJ9+vTht99+K/b4rKws/v77b2bOnEnDhg1JTU1l0qRJ9OjRo8DTWR8fH3tiwuLaarVakWUZk8l00+R/+b/ThX+3haIqoq/MsTGkLQgnd+vVyvQKBVaFAlmhBEkifsZE/D5de1c+tRE/WyWTjWmYDRnIhnjMkd2QHvoeAGN2DPKJPsiGeCSrFoUhDUl2vOX7lKXvJbmkv5J3gNFoxNHRkW+//bZA5eBhw4aRlpbGhg0bSj75qvr169OqVSs+/vjjYvfPnTvXXijxel999RWOjgU7WaVS4efnR1BQEBqNpmwvppJ169aNOnXqoFKpWL9+PXXr1uWnn37C3d2dL774gq5du2I0Gpk5cyY//fQTaWlpeHt7M2LECCZPngxQ4FiA+fPn89lnn/Htt9/y8MMPF7lngwYNiI29FqUPHDiQZcuW4e7uzv/+9z+2b9/Onj17eOGFF5g+fToRERG8/fbbnDx5Ej8/PwYOHMjLL7+MSmWLsdPT05k1axYREREYjUYaNWrEW2+9Rf369Ut83XPmzGHz5s3ExcXh4+PD008/zdSpU+3B1NGjR3n11VeJjIxEkiRq1qzJ4sWLady4MTExMUydOpU///wTk8lEcHAw4eHhdOzYEYDjx48ze/Zs/vzzTxwdHXn88ceZN28enp6ejBs3jq+//rpAW6KioggODi62n8aOHcvYsWPt/fzuu++ydetWfv31V/z9/XnjjTd46qmnSnydha9RGt26daN+/frMnz+/1OeUJD09nVq1arFixQp69uwJwKlTp2jZsiVbt26lefPmpbrOoUOHePLJJzly5AhBQUH27V999RUzZszgwoULRc4xGo3ExsaSkJCA+WrhRKFqkQwGfHZsxmvnFhRmM7JCQXLrx0nq1AOLWLJ9X5Ew4aH6BxklKeaS/3bfipycHAYNGkR6ejr6m0wqr9QnN1euXMFisRSp+uzr68uJEyduev6BAwc4duwYn376aYnHzJgxw/7mDbYnN0FBQXTs2LFI5+Tl5REbG4uzs7O9krEsy8i5OaV6PbIsk5WVhbOzM5IkleqcG5EcHEt9HZVKxdq1axkzZgy///47gP31OTg4oNfrWbhwIVu2bGHdunUEBwcTGxtLbGxsgX5wcHDAxcWFl156ic2bN7Nnz54Ss8oePHiQYcOGodfrWbJkif0+AAsWLGDevHm89957qFQqoqKiGDt2LEuWLKFNmzacOXOG559/Ho1Gw5w5cwBbJXIHBwciIiJwdXXl448/pnfv3pw4caLIE7t8Xl5erF69moCAAI4ePcrzzz+Pl5cXU6ZMAWDs2LE0atSIjz76CKVSSWRkJG5ubuj1embMmIHFYmH37t04OTlx/Phx9Ho9er2etLQ0evXqxciRI1m6dCm5ublMnz6d0aNHs337dj744APOnz9PvXr17MGzt7d3sU8WFAoFOp2uQD+/8847/Pe//2XRokW8//77PP/880RHRxf7OvM/f2i12pv+Ql9PpVKh0WjKdE5J/vrrL0wmE927d7dfr1mzZgQHB3P06FGefPLJUl3HbDYjSRJBQUEF2qXT6ZAkqdi25uXl4eDgQNu2bW9aYdxkMrFt2zY6dOhw23Ww7nXl0VeyLJOz6QfSF7+JJTEeAE3TFhiTEnE/sBfv+Fj7kxpzQjwJI5/BHBuDKigYv5XrUPn6ledLqlD3+s+WbM4AaxaSpugqNdkYBwpnJFXxf0tkUxJy6hasyd8jp21HwkqKqR4PK99DrfND/fAGFNrbzyidP/JSGpU+LHU7Pv30U+rXr0+LFi1KPEar1aItpsiaWq0u8gNqsViQJAmFQmFPc2/NyeZCgxplaldqmY4uWcixCygcnUp9fK1atXjnnXeKbM9/PbGxsdSqVYu2bdsiSRI1ahR9XVarlaFDh3L48GF+//13AgNL/oH09fVFp9Ph6OhIQEDBX4hBgwYxcuRI+9ejRo1i+vTp9uHHmjVr8uqrrxIeHk54eDi///47Bw8eJCkpyf79WrhwIRs2bOD7778vcc7KrFmz7P9fs2ZNTp8+zdq1a5k2bRoAMTExTJkyhbp16wJQu3Zt+/GxsbH07duXhg0bAgVLAyxbtozGjRsXeOqxatUqgoKCOHPmDKGhoWg0GvtckpvJ/7nKN3z4cAYPHgzYnpC99957/PXXX3Tu3LnIuflDNYWvURq3ck5xkpKS0Gg0RYIvX19fEhMTS3WPvLw8ZsyYwcCBA4tMHs4/v7jrKBQKJEkq9ne2JGU59n5XUl9ZMzKKzTUDtkR8pgvRpCych+Hv/QCogqrj+err6B55jIT/DMAiSQRcTcgHoA4KJmj1N8QN6onSRY9W74riLvwe3Ys/W7I5HcOJXmC6jKbBNhS6a09VrXmxGP/pBGpvtPU3IalcbR/6s49iSYnAkrwZOfMAYPsQJmErC5ZtCUSvOotDneUonUPKpZ1l6fdKDW68vLxQKpVFJiUmJibi53fjiD47O5u1a9fy+uuvV2QT7ypNmza94f7hw4fToUMHateuTefOnenWrZt9CCbfpEmT0Gq1/Pnnn3h5edm3z5s3j3nz5tm/Pn78eLFDMPmaNWtW4OuoqCj27t3LW2+9Zd9msVjIy8sjJyeHqKgosrKy7PNT8uXm5nL27NkS77Nu3TqWLl3K2bNnycrKwmw2F/j0P3nyZEaNGsWaNWsICwvj6aefts8PevHFFxk7dixbt24lLCyMvn370qBBA3t7d+7cibNz0UfqZ8+eJTQ0tMQ2lUb+fQCcnJzQ6/UlTqIvyfVte/bZZ1m+fPlttSlfcd/r22Uymejfvz+yLPPhhx/e9vWEinWjRHyGf44Q90wPexI+ycERt3ETcR01DoXW9mRNJOG7y1gywXQZOe8cxiMd7AGONS8W45EOyHnnQJaxJG/Gmrkfa3IEsqHgELLk3BiFvg2WK99hMSTzb+5o/LW/YTo5AqlQwHQnVGpwo9FoaNq0KTt27LDPubFarezYsYMJEybc8NxvvvkGg8HAs88+W6FtlBwcCTlWdB5AcaxWK5mZmbi4uJTLp2XJoWwTr5ycbvyUp0mTJkRHR/Pzzz+zfft2+vfvT1hYGN9++639mA4dOvD111+zZcsW+5MFgDFjxtC/f3/71zd7WlG4LVlZWYSHh9OnTx/A1lf5Q3g6nY6srCz8/f3ZtWtXkWuVtET4jz/+YPDgwYSHh9OpUydcXV1Zu3YtCxcutB8zd+5cBg0axObNm/n555+ZM2cOa9eupXfv3owaNYpOnTqxefNmtm7dyvz581m4cCEvvPACWVlZdO/enbfffrvIff39b38yZOFPIJIklXnib36FbaBchp7yFfe99vPzw2g0kpaWVuD7UZoPIvmBzYULF/j111/Lta1CxSiciC/gqw0ovbxJfX8haR8sslfsduzYFa+5/y0yQVih15cYvJSUnE+oPJK2GpoG2+yBjPFIB9S1V2E8MRQMF0DhCKZETCeHXztJoUPh9gRKj64oPZ9Clq0Yj3QA4yUkbZ2r1w1Bzvu3QMB0p1T6sNTkyZMZNmwYzZo1o0WLFixZsoTs7Gz78MXQoUMJDAwsMiny008/pVevXkU+6Zc3SZKQSjs0ZLUimS0oHJ2qbPVmvV7PgAEDGDBgAP369aNz586kpKTYhxt69OhB9+7dGTRoEEqlkmeeeQawrVIrad5LaTRp0oSTJ0/ah36sVisZGRn2StdNmjQhISEBlUpFSEhIqa65b98+qlevzsyZM+3bipuQGhoaSmhoKJMmTWLgwIGsWrWK3r17AxAUFMSYMWMYM2YMM2bMYMWKFbzwwgs0adKE7777jpCQEPuE58I0Gg0Wi6WMPVF+KqrCdnHf66ZNm6JWq9mxYwd9+/YF4OTJk8TExNCqVasSr5Uf2Jw+fZqdO3dW+O+rUD4KJ+K72LsDCrUGc9zVPCYaDb7vrsCpk8gvdq9Q6IJQ19+KMaq9LcCJandtp/XqvFONP0qPp1B6dkXh9gSS0vYBXDZctAdGkq4m6robIDEK9cMbkI93tgdM2obbkbTV7sjrqfTgZsCAAVy+fJnZs2eTkJBAo0aN+OWXX+yTjGNiYooECidPnuT3339n69atldHku9aiRYvw9/encePGKBQKvvnmG/z8/Io8Genduzdr1qxhyJAhqFQq+vXrd9v3nj17Nt26dSM4ONh+vT///JNz587x1ltvERYWRqtWrejVqxcLFiwgNDSUuLg4Nm/eTO/evYsMc4FtjlFMTAxr166lefPmbN68mR9++MG+Pzc3lylTptCvXz9q1KjBxYsXOXjwoP3NeeLEiXTp0oXQ0FBSU1PZuXMnderYPnGMHz+eFStWMHDgQKZOnYqHhwdnzpxh7dq1fPLJJyiVSkJCQti/fz/nz5/H2dkZDw+PKhHU5j/RycrK4vLly0RGRqLRaOzzjm6Fq6srI0eOZPLkyXh4eKDX63nhhRdo1aoVjzzyiP24hx56iPnz59O7d29MJhP9+vXj0KFDbNq0CYvFQkJCAmALoO62FYn3G1VAID5LVxA/sCfWy0nkP1dUeHgS+ON21NXu7DCDcHOyOR0smcUGELLhIihdkFQF82TJVhPW9N+xpGzCmrwJjAUT8UkOoSi9+6P07Ibk3AhJKuZvnNIF1N5IgKbBNixKPyAKhTYQ5dUnQqi9bcfdIZUe3ABMmDChxGGo4oYpateuXWKeD6FkLi4uLFiwgNOnT6NUKmnevDkRERHFviH369cPq9XKkCFDUCgU9uGkW9WpUyc2bdrE66+/zttvv41araZWrVqMHj0asD0hi4iIYObMmYwYMYLLly/j5+dH27Zti6ymy9ejRw8mTZrEhAkTMBgMdO3alVmzZjF37lwAlEolycnJDB06lMTERLy8vOjTp499dZPFYmH8+PFcvHgRvV5P586dWbx4MWAbitm7dy/Tpk2jY8eOGAwGqlevTufOne399corrzBs2DDq1q1Lbm4u0dHRpX7qVJEaN25s//+///6br776iurVq3P+/HnA9jv1+OOPl7m9ixcvRqFQ0LdvXwwGA506dWLZsmUFjjl58iTp6bZEXZcuXWLjxo0ANGrUqMBxO3fupH379mV+bcKdIVssZHy5mpT/vVlktajfR2tEYFMF5SfSK3FS8NUAQ1t/EyBjSdmCNXkTlpRfwHJ9cj2J/MnBVy+M0m/EDYeUJJWr7bpXAyvLdfloFLogtA23FxtYVaRKzXNTGTIyMnB1dS12nXxeXh7R0dHUqFHjpktOi1N4qEUomeir0rNarYSEhDBp0iQmTZp029dbtWoV8+bN4/jx41Vm1cfq1auZOHFisaUlyvJ7aTKZiIiI4Kmnnqoyr62qKqmvDMePcmXmyxiiDtk2aDRgNNr3q4JDikwyvh9U9Z8t2XARQ1SYfWio2EnBKk8UjrWxZh4A+bqcUWpvFK7tsKb/BqZE29BS7VWYTo4ocr3SqKi+utH7d2HiXUUQ7hLTp0/H2dnZ/mTkVkVERDBv3rwq8wfa2dmZMWPGVHYz7nvWnGyS58/hUs8wDFGHkJycUbh7gNFoC2i+iUAVHFKk2rdQNeRPCpZ0NZHzzmGICsMUvxLD301tgQ2AORlrxj6QzUiOD6EKegVNw91oG+9DzjpkD2w0DbahdG1V4HrGIx1KrB1VFVWJYSlBEG5s06ZN6HQ6FAqFvVTBrfrmm2/KqVXlI3+O0M1KKwgVJ3vHFpLnTLNPGHZ8oiOGE8exxF0s8KTm+knGcYN6EvD1RrH6qQqRND4og2diPjsRDNGYT1//oUGBwvUxFJ7dbBOCHWrZ98jm9AJzZvKf0Ch0QfZVVHd6zsztEsGNINwFgoOD79khvIpa9XW/u1kSPqtWhyotlSsvjiJ3y2YAVIFBeIW/ja7ZI8SP6I+kUhUYgro+wFF6eqEQpRXK1S1NCDalYkn5GWvyT1hSt4Alq8i5yuCZqAMnIKmLX61YeM7M9SprzsztEsGNIAjCPeZGSfjMcZe4NLAHskIiNCGBXEMeKJW4jhyL+4tT7FnRRSK+O6ssE4Jlc4YtmEneiDV9T6H5M75gzQXLtVIF1qSvkf3+U2JwA7YAhxKClzu1fLs83XsfA8vBfTbHWhCqNPH7WHaFk/Dlz48xx13iUr/OWGIvYL1wHqUhD03DJgRu3IHn9LkFyr0o9PoSh5xU/gEisClvhbIEW/NsRYmtebH2icJy7ikMkY9jOPAAprMTsab9enX+TF1UQdNQ1/3BlnDPkmGbO9Nwd4E5M/nXvB+I4OY6+RMsc3JKVyhTEISKZ7y6UkfMySm9/CR8108Azvl9N7Fd2mBJsBW4lJycudTvWXy+3oi2zsOV3GKh2AnBl5Zh+LsxGKJtB5lTkXOOARIKfWtUNd9G2/w4umaRqAKex3zuZTBE3zOTgm+HGJa6jlKpxM3NzV7jx9Gx9FW5wbZk12g0kpeXd0/OjShPoq9K737uK6vVyuXLl3F0dCwxU7RQvMITgBOG9rXvc3yiI27hCzjy199IImisMiSNN8qg6ZjPTbZNCD478bqdWhQeHVB69kDp8RSSxqfgyYUS6d0Lk4Jvh/hrUUh+nZyyFjEE2+Pz3NxcHBwcyhQU3Y9EX5Xe/d5XCoWC4ODg+/K13y6FXo+mVm3MMeft2zxmhOM2ejym6xKtCeWnrJOCZXO6rbr2lQ1YU7aANbvIeaqQN1AFTkBSllwK6F6cFHw7RHBTiCRJ+Pv74+PjU+ZffpPJxJ49e2jbtm2VySFSVYm+Kr37va80Gs1998SqPOTu30vS5LFY4uMKbM/4chXOXXuBt0/xJwq3rLSTgjW1V2JN343lyo9Y03aCfN17jcYPLDkFJgRbElah9Bl0w+AG7r1JwbdDBDclUCqVZR7jVyqVmM1mdDrdffkmVBair0pP9JVQFta8XFL/9xbpqz6yV+9W+vjh+8FKkl4eZ5+D473m+0pu6T2o0KTg67MEGyLbgzEWDJcw/PUw15c4kBxqo/TqheTyCKazk8GSUCRLcGVU1r6biY9DgiAI9wjDkcNc6vEk6SuXXwtsqgUT+P0WdE1bFJhknDDymUpu7b2nyKTgyLYYTz6P4WAdW2ADIBsAGcmlGaqQN9A2O4Ku+VExIbiciSc3giAIdznZZCL1g0WkfbAILBaUXt5Ielcwm0tMwodHyTlPhFsjyzKYklC4d8CS8CkYL2FJXGXfL7k8gspnAArPHkWfwIgJweVKBDeCIAh3MePpkyS9PA7jsSgAnLr2xOv1d5CUqhsm4bNodfDbb5XR5CrtRhOCbfsz4LpkeLJsxZqxH8uV77Fe+RHZcKHY89T1NqLy7FzifcWE4PIlghtBEIQq6kYlFEwXY8n68RvS3l+IbDSgcHXD6/UFOHfvYz+mpER7Kv8AZLFaqogbTgg22BIhGo/3R9XgG+Tso1iu/IDlyo9gvG7StsIRhVt7rJl/genaqlvz2YkonG48Z0ZMCC4/IrgRBEGogm5UQiHvr/3EDekDBgMADu3C8P7vYlS+/pXV3HvDDSYEm472wFPVDyn3KIaD9cCcfO08pQtKz24ovXqDQ11M//QAU5KYFFyJxIRiQRCEKqi4EgqyLJO2fClxA7rZAhtJwmPabPxWfi0Cm3JQbJbg2IUY/m6IwniCpi5vorCm2QIblTtK32Fo6v2IrlUcmoc+Q+HSDNM/PZDzzolJwZVMPLkRBEGogvJLKORnGL7UvysqX38Mhw/aDtBqCfj8e3TNW1ZuQ+8xksYHZdAMzGcn2bIER8+wbZfAaNWj9euH2rcfCtd2SIpCqRnEpOAqQwQ3giAIVVT+6qaLvTpgibuIJc72iV/h5k7ghh2og4IruYVVT1kzBAPIViPWtB1YLn+L5cpGsKQXvXDIYnYd9uep1t1RlpBvSkwKrjpEcCMIglBFyWYzGV+sxHqlYDkYvxVfisCmGKXNEKytvwkUjljTfrUFNMkbwJx27UJqH7DmFcwSHPcx8PpN2yAmBVcNYs6NIAhCFWS+nEj80L6kLX+3yL6kl8dhjrtUCa2q4gpNCLbm2RLn5Qc2ct455LwLmE6PJ+/PIIzHumNJ/MwW2Gj8UAaMQ11nLSicwJJhmzfTcLdtvozhvO1aBtHvdwMR3AiCIFQxuQf2canb4+T9udc22QNQBYcQ8E2EPcNw/iRj4ZrCE4KNRzpgTvsNw+HWyHnnAAWYErBcXg/mFFD7oPQfg6bBdnQto1EHvYI5+tXiswRrQwAwHespJgTfBURwIwiCUEXIskzaR0uJH9wby+UkUKtBlm2BzVcbipRQiBvUE3Ohwpj3O4UuCHX9LaDxR847h+nIk2BKuLrXCmpvlP7PoWmwFd0jF9DUWorSrS2SpLw2IfhqYHP9hGD1wxtsl1B7iQnBdwEx50YQBKEKsGSkc/mV8eRs/wUAp669MMVewJqWWmIJBaWnFwon58psdpUhyzJydiSWpHVYLn8DxvgC+xWePVAFjEfh1gZJKv6t74YTgrWBQBSauuvFhOC7gAhuBEEQKpnhWBSJ4/+DOfYCaDR4zZmPyzNDkTMzb1hCQeHkXGIW4rtZWVY8WXNOYbm8DkvSOuTcU9cdKXF95W05+xiSw4MlBjb2s24wIdi2/97r73uRCG4EQRAqiSzLZK5bQ/LcGchGA6pqwfh+sBJt/UYASHr9DUso3ItKs+JJVupRefXGkrwBOevQtZMVOhRuT2DN/BtMiSJD8H1MBDeCIAgV5Ea1oYzRZ0ld/DbZm74HwPGJjngvXIbS1e0Ot7KKKaEEgiXzCMajncF8BQBzduTVE5Qo3Dug9OmPwrkpxn962wOb/HOlqwn08q+pbbhdLMu+x4ngRhAEoQLcqDZU7p97iR/WD0wmUCjweOU1XJ+bgKQQazzyVzzlByOGw62QdA8gZ/5R4DiF/jGUPgNQevVB0ngDV4ezRIZgARHcCIIgVIjCtaHyA5yML1ZxZc5UkGVQKPB5dwXOXXtWdnOrDFm2IueeQXJuhJwXDaYk5Pzq2pIGZbVJqPxHo9AVTWIoMgQL+URwIwiCUAGK1IYa2ANd/UZkR1xdUqzVErhuM9oGjSq1nRXhVkogWLOPY0n6AkviWmRj8Xlk8vPO3IjIECxAFchz88EHHxASEoJOp6Nly5YcOHDghsenpaUxfvx4/P390Wq1hIaGEhERcYdaKwiCUHr5y7aVgUFYYi/YAxtJrydoy757NrAxHO2GISrMniE4nzUvFkNUGIaj3ZDN6cjGJMyX3iPvUEsMfzfCHPs/W2CjckPhPRA0BecqmU6OKHJNQShOpQY369atY/LkycyZM4dDhw7RsGFDOnXqRFJSUrHHG41GOnTowPnz5/n22285efIkK1asIDAwsNjjBUEQKptsNIDVUmCb/6drUQdXr6QWVbBSlUCIxni8P3l/Vsd09mXkrMMgqVB4dkNTZy2aRvuQM/eDMa5gCYRC1xSEklRqcLNo0SJGjx7NiBEjqFu3LsuXL8fR0ZGVK1cWe/zKlStJSUnhxx9/pHXr1oSEhNCuXTsaNmx4h1suCIJwc3l/H+BS745YCmURvpdrQxVfAmEvhsjHrpZAkMCUhDVtJ2BBcmmO+sF30T0Sg7be9yj0LTAd64acd65oCYTrrilKIAg3UmlzboxGI3///TczZsywb1MoFISFhfHHH38Ue87GjRtp1aoV48ePZ8OGDXh7ezNo0CCmTZuGUqks9hyDwYDBYLB/nZFhq/JqMpkwmUzl+IqwX6+8r3svEn1VeqKvSq8q9VXOzz+RPHUCGI3IkoRUvQY+by/l8szJGGJjiB3+NH6frkXl518p7avQvlL6IdX9BfPRLki5F7BGPYEk5SfUk0EbjOT1DArvgUgOociA2dYYZKsDZmUgaLSo627AovTDYjJdu+axnqD0QmF1QLqD3+eq9LNV1VVUX5XlepIsy/LNDyt/cXFxBAYGsm/fPlq1ujZBbOrUqezevZv9+/cXOeehhx7i/PnzDB48mHHjxnHmzBnGjRvHiy++yJw5c4q9z9y5cwkPDy+y/auvvsLR0bH8XpAgCAKALOO1cwv+P30DQMbDjYh59jlkrbaSG3ZnKDDgoz5AoHYnnuqj9u1m2YEEYyvijW1JNdehCkz5FO4yOTk5DBo0iPT0dPQ3ycx9V62Wslqt+Pj48PHHH6NUKmnatCmXLl3inXfeKTG4mTFjBpMnT7Z/nZGRQVBQEB07drxp55SVyWRi27ZtdOjQAbVaXa7XvteIvio90VelV9l9JZvNpL4xk+yrgY3k64c+N5sOrR4p8ITGnBBPwshnUHp44rvsMxQudz7vys36SjZngDULSVM0AaFsjAOFs70UgSzLkB2JNelz5CvrwZJmP9YqK5BRAjL+LvEEPzzoap2mu0tl/2zdTSqqr/JHXkqj0oIbLy8vlEoliYmJBbYnJibi5+dX7Dn+/v6o1eoCQ1B16tQhISEBo9GIRqMpco5Wq0VbzCcmtVpdYT+gFXnte43oq9ITfVV6ldFX1qxMEl8YTe7u7SBJeM58A5d+g4rNUKwOCibos2+rRG2o4vpKNqdjONGr5BII/3QCtTeahz7HmhKBJWEVcvaRaxfQBIAlByxpKB1CriuB8C/y8c4o7+ISCOL3sHi5RjN5Jgt6nYqDh/4F4OChf3msVSMy8szo1EocNLcXcpSl3yvtuaBGo6Fp06bs2LHDvs1qtbJjx44Cw1TXa926NWfOnMFqtdq3nTp1Cn9//2IDG0EQhDvBnBBP3DM9yN29HUnngO+y1bj+ZwwKvb7EGlAq/4BKD2xKdIMVT4aoMNuKp+xjGP6qj+nsJFtgI2lRevdH/dBnIGnBkiYmBN9Fco1mUrMNWCwW9uw7zPoft7Nn32EsFgup2QZyjeYbnrt0+z+8/sMBGj85gn7DpgLQb9hUGj85gtd/OMDS7f/c8BrlrVKHpSZPnsywYcNo1qwZLVq0YMmSJWRnZzNixAgAhg4dSmBgIPPnzwdg7NixvP/++7z00ku88MILnD59mnnz5vHiiy9W5ssQBOE+Zvj3HxJGDcQSH4fS0xvfT75E17BJZTfrthQugWA80gFVyDxMp8dcG3KyZtuOdW6Eync4Sp9nkNQeyOZ0zJeWgSSJEghldP3Tj737j5CQlIyfjyetWzYo1dOPWz0/PzhJSMlgxycrOHc62r6vZq0aPDlqNH4eel4Mq1fs+XkmCwkpGeRaJer37Eva56sBcNDrqd+zL7lWiYSUDPJMltt+elNalRrcDBgwgMuXLzN79mwSEhJo1KgRv/zyC76+vgDExMSguK7WSlBQEFu2bGHSpEk0aNCAwMBAXnrpJaZNm1ZZL0EQhPtYzm87SRw/AjkrC/UDtfBbuRZ10L2Rv0ahC0L98GaMUe2Q885hOvHMtZ1KV5S+g1H5DUPh3LjAeaIEwq253QDjds4vHJwkrFhBTno6jq6upQpO9DoVOz5ZQf2efXHx9KT90GGYzFYeHzYcBw9PMpOT+WPj9/xv4KPl2GM3VukTiidMmMCECROK3bdr164i21q1asWff/5Zwa0SBEGwKamyd8a6L7jy2stgsaBr+Si+yz+/Zyp6W3OjsSR8ijlhNZgKJlVVBs9GHfwKkkJX4vn3cwmEW316crsBxq2ebzCayMrMYteaNYQ82gaNgwOP9OnDxX//JbB2bXIyMsi4fJns5CuEp17GZJUxW2XMMliRsCJhQeLhHn1QqlQY8/LQubnzw5kE3P39SU1OZtvVtuzdf4S2jzYu0vaKUOnBjSAIQlVVXGVvWZZJXTSftA8WAaBw98D3vU/v+sBGls1Ykzdjjl+BNXUbkJ8lRAlcy7BsTfoC2W8Y0l06Ibgi3c7Tk8JPPzqMHs3e9etp3b8/Lp5Fn34YjCaSUjJISs0kJSOLK2nZ/PnTJjwfqIVKo6Fl797kpKfj7OFBXlYWednZSMhMXJECShUKtQqVWoPy6iTdloOH2tvi7udHQGhokdeXd/W/EnCzqb3S1YU/e9evJyc9HYCEpOQy9ObtEcGNIAhCCQpX9vZf/Q2pS/5L1sbv7MdIzi7IVTCx282KV8pWB/v/my59jjlhFRivZVKW9G2Qc0+BKRFJV/O6FU+2OTiFV1EJt/70JD0rlw1b95GRZyZqxw5CGjRApdHQuFMncjMzycvORpZl6nTpzn8+3IJKq0VdzCrghl2733LbLWYzJoMBs9GI1WzGYrFgtVjIzczElJuLyWikmp8nvl5uaFVKdGoVjloVDlo1V5KSWbnmR5QqFQ2efBJXDzc6BcrsN0Hr/v3tT278fDxvuX1lJYIbQRCEEhSu7B3b5TG4LuO5KjjE9kSnhBVRlSW/eGVJS7kNUWFYcKSRkw7LocPA1RWoam/bPBqPrphOjrQHNvnXkApNMtY23H7PDzOVReGnL+2GDOHYrl3Uat6c3KvDO4bMDKYkJWBGiaxSo9I5oNbpAC2dx40r8z3NRiNmgwGzwUBOVhbGvDwsJhM6Jyfyc/QmRkeTnZaG2WCge8fWPNqsLq5ODri5OOLh6sTJE2fpPXgGjq6udBg9Gr23t/36mdcNK839Zmmxw0oWi4Vv1m6gfs9euHh6kpuSjN5RQ2Z0qv0p1LGN39O6ZYNb7tuyEsGNIAjCDagCAvFZ9CFxz/QoPrAJqIIJ6Qot5c4PTiwZf2M89hSYU1ECPlczaChc26H0H43SqyeSQmt76qP2RoL7bsVTSXNmWjSpA0Ce0VxivpW1P+1GdnIl6fx5JIUCz8BA2g0eXOyxhd98LSYTuVlZ5GVlYbVaka/+Q5KwGI2cP3qU3PR0XhzVj0eb1cPHwwUfdz06re2buGffYZ56+kV7gOLiee0piZObmz1A6TrnuSIBSqC3OzVr1bAHZZnJyQWGxG4WnGTkmXly1GhyrRKZycn89vlq+swdzs7PVtNm6HBcPD15YuQoMvLMuDsVXyqpvN1ScLNjxw527NhBUlJSgZwzQIlFLwVBEO5Ghn+PkThuOJgLDj35LFxWNQMbii7lNhx+DMkxFDl997WDlK6cz36MBx55A43+4YLn36crnm40Z6ZOvVq8Nr4ny3edYEKH+jhoVPx77hJbDv7Lyfg0cpQ6HFzdaD1ggP0c2WrFkJODMTeX7PR0ctLTyc3MpE7NajSoHYyfu55qPm6EBHjh5epE0w4jSwww9N7eHNv4PeMHdym2lmLrlg1uOUApHJzkB0LbVqywB0o3Ck50aiV+HnoSUjLYt+E7cq9mEs7NyODYxu95YuQo/Dz06NR3JrCBWwhuwsPDef3112nWrBn+/v5IklQR7RIEQah0uXv3kDB2KHJWFqjVcN3cmqSXx1XdJzeApHJD6TsMc8ybYIpHTo+/ukOLqsZbyF7DObVlJw861C7h/PtvxdON5szUfaon8ak5/BX7Dy+dPINB7YCDqxugAw8/HLAlok25dInLFy7g6uODV3AwOmdndM7OSAoFf3z7LTnp6cwrZngnNdtwWwHG7QQohYOT/AnAOenppQpOHDQqXgyrR57Jwv8GPsrvf0SSlnyRbz9bUK4ZisuizHdavnw5q1evZsiQIRXRHkEQhCoha8O3JE19wRbQaLVgMKAKDsFn4TKSXh5nn2Rc1QIca85JzHHLsSR+bhueKkTTYCtK11aiunUxCs+Zafvss5yPiiKwdm0skoJIRRDuV9MY5QczhtQUPNRWGtXwo2OLenR6+pMCT09+XbWqVE9PbjfAuJ3zCwcnt5JA0EGjsu9/tGUDIiIu8mjLBiiVyjs2FHW9Mgc3RqORRx+9c4l4BEEQ7iRZlklf8T4p/w0HQHJ0RM7JKTDH5vpJxnGDehLw9cYKmVR8sxVP+UNDsmzBmvIz5rgPry7jtpF0NWwFMM3XluCaTo5AarANlMXX8Lvb3U6W3117D5NhsBDzzz9Ue+ghvKpVw6vatb7PfzLjqrDQtkFNurRqgI/HtRIat/P05XYDjPI4P39f4adKlRGc3K4yBzejRo3iq6++YtasWRXRHkEQhEojWywkvzWLjNUfA6AfPIK8f45gTUku8ITm+gBH6emFwsm5/NtykxVPxiMdkFXuqDy7Y0n8DDkvf36IhMKzK0qvpzGdnwvm5GKXckt1fyn3Nle2W8kzE5uQzA97ojh6MQWLo57OY8faz5GtVtIvX8aQnU3s0aO81K8Fk1d+wgcLZ9C/a9EP+eUxvHM7Aca9FqDcjjIHN3l5eXz88cds376dBg0aFJk1vmjRonJrnCAIwp1iNeRxefI4sn/eCIDHq6/jNmpciRmKVQGBBHy9seIqe5ew4smaF4shsi0YLwES5qy/rzbIHZXfCJT+zyMp1BiiwsAQXeJSbvOxnsDr5d/uSlSaPDNxV9LZtv8f/jh+gbhsC1oPTxQKDUovP5SAITeXhNOnUWk0eFarhtvVckB6N1f0jrb7lJSvpTyGd4TyUeYePnLkCI0aNQLg2LFjBfaJycWCINyNLOlpJD4/hLwDf4Bajc//PsC5ex8AFHp9icFLRea3KbLiKSoMpe9QLLFvg5yfK1ZGcmqAKmA8Sp8BSErbu2+plnIrvSqs7ZWlpCy/LXr3xpCdTVZqKq4+PkREK8DBAwdbHkNyU5LxVFt5rE4Qc17/mAbXzZnZtWYNrfv3x93THUilxoMhN8zXIp6eVA1lCm4sFgvh4eHUr18fd3f3imqTIAjCHWOOu0T8iP6YTp9EcnbB76PPcWjVprKbBVwtXllnPcajHcAQjSUm/No+j66ogqag0Lcq8sGyNEu5FVYHuPj7HXkdd8re/Uc4dzqahBUreGzgQGSLheY9euDq5YVSde3tzmw0Yk1PIdTHhe6P1qPeA48Btjkzv5UwZ6bLc6PBFdoOGXZH87UIt6ZMwY1SqaRjx478+++/IrgRBOGuUNKwEkDO77u4/MoELEkJKH398Fu5Dm2depXQyqKsOScxX3oPS+IasOYW2Keu+x0qrxun2r/ZUm6pCq+WupVJwXkGI1sO/EuTLl0IfOghXH18CuzPTE7m0okTXDp5ktnj+jNkVL8i973RnJl/f94I43rg6+5yR/O1CLemzMNSDz/8MOfOnaNGjRoV0R5BEIRyU1zhy3xZm34g6aXnQJZR16yF/2ffoAqs3PwtsixjTduF+dK7WFMiru2QNCAb7V+az01B4dzonqztVJZJwVdS0vlu92GOXUpDdnZD7RFM3bbBAFgtFlITEjAbDDi5uQFw/LffyElPp3o132LvfaM5My2a1GHLli2Maf+QmDNzF1CU9YQ333yTV155hU2bNhEfH09GRkaBf4IgCFVF4cKX5rhLAKR//glJL44GWQatFt8PVlVIYCOb021LtovbZ7homxsDyFYD5oTPMRxqhvFop6uBjYTCLQw0/iAbbRODG+5G0tW0TzK25sWWe5srW+FJwY6utqdPjq6uPNyjD4lJyRw4EMXz72/kjV/+4YRBh8rLD7VOhyEnm5gjUVw6eRKzyYRGp+Pwli3Ismyfg/NAaM2bzplxd9KiVCpp+2hj+vcKo+2jje1ZgXUisLkrlPm79NRTTwHQo0ePAuO8siwjSRIWi6X8WicIgnAbChe+jBvUE8f2YWR8/gkAkoMj1TbtQl2jZrnfu1RLuZVuqDw6Yk5cDcYE206FI0q/YSi9+2E6ORqM8fdV8crCk4KfGDGCf/fuJaR+fZRqNU6uruB1bTJ0bkoy3mqZ9g1q0KJBY+b/5HjLWX6Fe0eZg5udO3dWRDsEQRAqRH5OmksDe2COOX8tsHF2odrm3aiDgivmxjdcyt0OjBcBCXP2IdvxmkBUgeNQ+Y1EUnvct8Ur9+4/Qlz8ZdR791K9QQM8AgJo1aePfb/ZZCLhzBlqeTszqmcb+2RgsA1p3U6eGeHeUebgpl27dhXRDkEQhAqj9PRCXS0YS+wF+za/lWsrLrCh+KXcqsDxmM/Pum6CsIzk3ARVtZdQevVDUlzLG3Y3F68s64Rgq9XK75Gn+eXgSS5kGOk7YwaS4tqsiZyMDDKTk4mOjCT68GEsJhNDP5hDvQcK9ovIMyPkK/N3eM+ePTfc37Zt21tujCAIQnmzZKSTMHwAhsi/Cmy//Mr4Cq8LpdAFoa7/M8bINmCIxnzulWv73DugCp6BQt+6xBxhd2PxytJOCB712INs/eMY+05eJFOhQ6d3BQcPXK7mnkm+eJG8rCycPTzQe3vjqNfjqNcTd/IkOenpN0ykJ/LMCGUObtq3b19k2/W/mGLOjSAIVYU5Po74IX0wnTsDgMLHF78PVt2RwpeyJRdL4meYLy4GU1KBfeqHvkTl83S537MquFGW4Ic6deXCuQvERkucungZtU4Hbr7oAIvJhCUtmVreTqz74jvqdemOZ7VqZCYns2X58lIVnxSEfGUOblJTUwt8bTKZOHz4MLNmzeKtt94qt4YJgiDcDuPJf4kf1g9LUiIASr8AAr/9ucILX8rmNMxxH2G+9N51QY0CsNqPMZ+fhUL/yD25lLvwhODHBg4k4exZqtWujZufHwrltacnhuxsdIZMmtX0o3f75njonUnNNpCkcBaTgoXbUubgxtW16CPSDh06oNFomDx5Mn///Xe5NEwQBOFW5R3YR/K4EVgzM5C0OhSeXgSu33xLhS9LXZnbEI/50lLM8R/bJhMDaALBmldi8crCq6iqklutrr1n32HS88zEHj9OtTp18KleHZ/q1e37UxMSuHj8OP0eb8wLzz2FSlkwQLnd4pOCALcQ3JTE19eXkydPltflBEEQbonr4YNc/nolmIxom7bEZ9GHSCrVLRW+LN1ybheUzg2xJK21J9qTHOui8h+F6eJ7YL501y3lLmt17czsXL7fdZj9p+PJUTvSZdw4+/HXJ9P7Z88e4q6+T7zU69EigQ2IScFC+bilwpnXk2WZ+Ph4/vvf/9oLagqCIFSGzNUfE7TmI5BlHDt1w2fxhyh0DiUef9OhqFJV5gZLdhQACn0rVEFTUXh0AUsm5qR1IEl33VLu0lTXPn8xkaXrEzmdlIHs4o5aqwUP2/wZY14e8adPo1Kr8a5eHc9A2xMzR1dXtiUk3HBCMIhJwcLtK3Nw06hRIyRJQpblAtsfeeQRVq5cWW4NEwRBKC3ZaiXlv3NJ/2QZEuA8eATec/+LVMyTgbIodjl3tRcxR79aoN6TwuMpVEFTULq2vnbyXbyUu6Tq2k27diUnPR1jbi7u/v5EW5WovGyVyPMyM3Ey5/BIqD/vLFhD/R597JW1f129WkwIFu6oMgc30dHRBb5WKBR4e3uj0+nKrVGCIAilJRsMJE2ZQPamHwCI79aX5rPeuu3AJp9tOfdWjJGtbcu5z066ts+zJ+rqs1A4F/9GfTcu5YZr1bXjP/6YxwYMQAZa9euHq7d3geOyk6/gq4UOjR+gQ8tHUSgUpGYbOJQ8SkwIFipVmYOb3bt3M2DAALRabYHtRqORtWvXMnTo0HJrnCAIApRc2duakUH8fwZgOHQQVCo83lrEUY1TiXljykqWZawpEZguvAGmxAL71A+tReXTp4QzK9/NJgSrrlu9dT2zxcKOv07QpEsXgurVw8Xz2vCR1WrlSkwMMceOcfH4cZa++SL9e4UVOF9MCBaqgjIHNyNGjKBz5874FC4nn5nJiBEjRHAjCEK5Kqmytzkh3pbD5uxpUCjwfe9TNE90hIiIm1zx5mxBzWZMF95EzrpaHgEJuDYcbz7/Kgp98yq52qk0E4ID3J0JvbotJ9fAD7sPs/fEJXK1Tmjdgqjb1va6zCYTafHxWC0W9D4+OLi4EHPsWInzZsSEYKEqKPNPV36BzMIuXrxY7DJxQRCE21G4snfAVxuwZmcRP6QvliRbsUmljy/aBo2Rb3Ktm7kW1LyBnHXYtlHhCJIaLOl3zXLu0kwIjk1MJin5CpvO/ojF2Q2NzgE8fNECprw8Es6cRqHW4FujBlonJ/auX1/qeTNiQrBQ2Uod3DRu3BhJkpAkiSeffBKV6tqpFouF6OhoOnfuXCGNFATh/lW4svelPp2wZmchZ2cBoAwIJHB9BCr/AEwmU5HzS5OnBqUea8qmq09q8oMaJ5S+Q7Ck/AyGC3fVcu6SJgS36NmT3MxMcjMz8QgIwOhbGyWgxJZQz8GQxaO1A3i8RQv+97NWzJsR7lqlDm569eoFQGRkJJ06dcLZ+VrSK41GQ0hICH379r2lRnzwwQe88847JCQk0LBhQ9577z1atGhR7LGrV69mxIgRBbZptVry8vJu6d6CIFR9+Un3LvYKsz+tAVAGBhG4blOJ5RNulqfGEBUGCjWSQoucfdS2Q+Fkq85dbRJIaqxZh0FS3lXLufMnBCesWEG7Z5/FbDLRvEcP3Hx9C2QIzklPw0028ETDGnR99BHUattbgqiuLdztSh3czJkzB4CQkBAGDBhQbquj1q1bx+TJk1m+fDktW7ZkyZIldOrUiZMnTxaZ15NPr9cXSBhYXpMHBUGourK3RWBNvlJgm++Sj25cF6qEPDWW3Bjb6qerk4RlKBDUSGov+yXuxuXcx07HUKtlS6rXr497QACK6ypspyUmEnPsGAmnTrBw6gC6deuBWq0ucL6YNyPc7cr8kzls2DDS0tL44osvOHv2LFOmTMHDw4NDhw7h6+tLYGDZCtAtWrSI0aNH25/GLF++nM2bN7Ny5UqmT59e7DmSJOHn51fWpguCcBeSrVZSFrxB+sfvFdmX9PK4Gxa+LDZPjf8ozBfC7dmEbUHNeFTVJhYIauzXqMTl3GUpgXDqfDzrdh3mbEoeWg8vWl592g6QnpREXlYWTm5uKFUqzhw8iGzIRaEo+YOhmDcj3M1uKUNxWFgYrq6unD9/ntGjR+Ph4cH3339PTEwMn3/+eamvZTQa+fvvv5kxY4Z9m0KhICwsjD/++KPE87KysqhevTpWq5UmTZowb9486tWrV+yxBoMBg8Fg/zojIwOwFfwsbnz+duRfr7yvey8SfVV693NfyUYjKa9OIuen7wGwKlUoQmrgM28xl2dOxhAbQ+zwp/H7dC0qP//i+0rpB3V+xnI0DEXeecznZ9qujQLJdzTKoFdB7YXZduIdfoUlyzOaWb7rBImpmez+fDXnz16w7wt5oDrthg5HI5tR5WVxIdOMzsMLSaFH52UrJZFy6SJ5mVl4+PuiUSk5tHMHj/Tug4unO12eG83Z7bZVZffjz9WtuJ9/D8uqovqqLNeT5MKphm/iySefpGnTpixYsAAXFxeioqKoWbMm+/btY9CgQZw/f77U14qLiyMwMJB9+/bRqlUr+/apU6eye/du9u/fX+ScP/74g9OnT9OgQQPS09P53//+x549e/jnn3+oVq3op6i5c+cSHh5eZPtXX32Fo6NjqdsqCMKdpcjLpfrKD3A+/S+yQsnFAcNIa9H65icW4qo8TS2HL/FQ/wOAWdYRk9eFC4ZumOTia0pVZXEp2UTF5ZCp1uPiVzDvT2ZCPC6mdBoEOBHoIf6+CfeWnJwcBg0aRHp6OvoS6sHlK3Nw4+rqyqFDh3jggQcKBDcXLlygdu3aZZrYeyvBTWEmk4k6deowcOBA3njjjSL7i3tyExQUxJUrV27aOWVlMpnYtm0bHTp0KDKGLRQk+qr07se+siQmcPm5ZzGd+AfJwREpqDqy1WJ/QpPPnBBPwshnUHp44rvsMyw6nb2vVKazWGPDkVM2AiAjIcsKrKgBCUkbgvrhDSi0ZRtKv1MsFgtteoyj7lM9USiVJMcnoHV2xrPQh7jcK0nU0Gvo07YBdWrY+uZGT31qPBhC2yHD8Hdz4kHLxfvq5+p23I+/h7eqovoqIyMDLy+vUgU3ZR6W0mq19qGd6506dQrvQqm5b8bLywulUkliYsHMn4mJiaWeU6NWq2ncuDFnzpwpsb2Fsynnn1dRP6AVee17jeir0rtf+sp45hRJw/tjjruI0ssHv0+/Ql29ZrEZitVBwQR99q29srfJZEIrXUFx4UUsl78ArIAClI5IliwUDtXR2fPU/It8vDPKKpinBuCHLfuwuHiSmZGJT0gIAa5ugG0OUmp8POePHCE6MpLvPn2zyJwYtVrNhA71yTNZeHtg6xIzFP+6/eJ983NVXkR/lV5591VZrlXm4KZHjx68/vrrrF+/HrBN7o2JiWHatGllXgqu0Who2rQpO3bssC81t1qt7NixgwkTJpTqGhaLhaNHj/LUU0+V6d6CIFQ9eX/tJ2H0YKzpaahDauK3ej3q4BBkczpKbfHlApQeVlDKyKZkLOfn8ZjrcuTLtrF5hXtHrNnHwXixUvLUlGVCMED8lTS+2HKAfxIz0Xh406JnT+BqQJOQgCkvDxdvbw5s3MiVmBgAEpKSi733zSYEi7kjwr2szMHNwoUL6devHz4+PuTm5tKuXTsSEhJo1aoVb731VpkbMHnyZIYNG0azZs1o0aIFS5YsITs72756aujQoQQGBjJ//nwAXn/9dR555BEefPBB0tLSeOedd7hw4QKjRo0q870FQag6srdsJmni88iGPLSNmuL3yVcoPTxLkavmSZDNYLEl61NKgL4N2przkBwfsp2r0NzxPDWlKYHg56FnSIvqfLvzEJExKSjdvVCqHNFdrbR9JTaW2OPHCapbF6+ga6+7df/+9sR6xZVAEIT7XZmDG1dXV7Zt28bevXuJiooiKyuLJk2aEBYWdvOTizFgwAAuX77M7NmzSUhIoFGjRvzyyy/4+voCEBMTUyBHQ2pqKqNHjyYhIQF3d3eaNm3Kvn37qFu37i3dXxCEypf++ackh08HWcYxrDM+736MwuHqhNiSctXknMUY+RiYr3ty4diAvxO70+KRGSg0GqDy8tTcqARC3a49iT0fS2y0zOm4ZFQaDRpv21B8bmoKgTro3boeI1d+bM8ynJmcXKYSCIJwPytTcGMymXBwcCAyMpLWrVvTunXZVy4UZ8KECSUOQ+3atavA14sXL2bx4sXlcl9BEO6Mkqp6y7JM8pzpZHzxKQAuA4fiFb4A6bryLsXlqlH6DsYS+1/bExsAbTDqGm9hdetF8s+/FEjsWVl5agqXQHhy5EiO79lDjUaNcHR1RXNdItTc9DS8FWZ6tKpD2yaPAZCabeDJUaNFCQRBuAVlCm7UajXBwcFYLJaKao8gCPeYkqp6y0YjiS89R86WTQC4jZ+M++QZxWYczx9GMhxuDYZoLDFvXt2jRBUyF1W1yUgKdZWaR5JfAiHnhx+o264dHv7+tLpuXmJOejrnjxyhb5v6vDD+qQJPqAF0aqUogSAIt6jMw1IzZ87k1VdfZc2aNXh4eFREmwRBuIcUV9VbodeTMHIgeQf/BEDh4Yl+0PASS6lYc05hOjcVTAkFtqsf3ozK44kKfw1ldSI6js9/jaTbSy/hdt3KT0N2NmmJiZz56y+iIyNBlpnQtXmRwAZECQRBuB1l/q14//33OXPmDAEBAVSvXh0nJ6cC+w8dOlRujRME4e5XpKr3gK4oNFpM0WcBUHj7UO2HbUWGrABkcxqmC29hifvg2hDUdcxnxqGo4KXcpV3xlJyeyZqf9xMZl47WwxtVcC3cAIvJxJWLF1GqVHgEBOBbsyaOrq4knjt30wnBogSCINyaMgc3va6rVyIIglAa+VW9Lz39FJZLF8kf2Fb6+hP43S9FakPJshlL/EpMF+aC6WqxTIUjWHOQdDVR23PVFJxkXN5utuKp/X9GYkhNxWoxIes9UWl06Lxsc2lyryRx9vBhAuvVx7dGDTKTk9n68cdiQrAg3AFlDm7yq4MLgiCUhTkhDmtmwQSgvu9/WiSwsaT+iunsy8g5tnIJku5BZEsWmBJumqsGhW+5trmkFU8+ISFUf6w96RnZOLh7kf8MJTc9DT+1hWfaNyIkqDmv/+AtJgQLQiUQg7WCIFS4rJ+/4fKkl5CNxgLbk14eh//q5aiq1UI2XcZ0birWZNsEY1TuqKvPQeHdH+M/vUHpePNcNWUqJnNz1694Uut0tOjVC0e9Ho+Aa0NoxtxcdLnpdGnyIF0fe9Q+fybXaBYTggWhkojgRhCECpW+5kOS586yBx7KasH4Ll5O0svjMMecJ354F7xma5HUqSCbACXKgDGoq89CUtsWLZQ6V005r5bas+8wOVYFKXFxVKtTh2oPPQSA1WLhysWLnD5wgAtRUWxau5i2jzYqcK6YECwIlUf8VgmCUCFkWSZ10XzSPlhk36bwlvD/7CM0NZrju/J90t7thFOHPCSVDDIo3DuhfmABCsc6Ba51p3PVnIiO47Otf3HJoCDsuuzn6UlJ5GVl4erry6GIiNsugSAIQsUQwY0gCOVONpm4/Ooksr5bC4DS1wfZehmv6RlYLw/BpHkR66Wp6PvahqksKQ5om61EXa1s9elKo7SrnQxGE1/8sp+9pxNQefqgcPDA0cE27HTh6FFcvLzwq1kTVx8fQJRAEISqTAQ3giCUK2tWJokTRpK751dQKvF6cyHOXXpgTjmFJfEZ5LxzmM9OvHq0AsntBRwaTkfpWv4BQmnqOynNRixZ6aQpHNE6O18rg3AliQZ+Lny29kvq9+gtSiAIwl2kVMHN5MmTS33BRYsW3fwgQRDuSebLiSSMHIjx2BEkB0d83/sExyc6IstWFFmHsJgKDt+o6/2AyrNLhbWnpNVOTu7uVH+0LZdi4/AIDAS9D1rAkJONqymbAe0a0KrBY6RmG7ho1YkVT4JwlylVcHP48OECXx86dAiz2Uzt2rUBOHXqFEqlkqZNm5Z/CwVBuCsYz50hYcQAzLEXUHh44vfp1+gaNsGacwLTqbFYM/YWOcd8dhIKp4crLAlf4fpOrQcMIOPyZYIffhito60wp2y1Yki+TMsangx7uj2ODlr7+aIEgiDcnUoV3OzcudP+/4sWLcLFxYXPPvsMd3d3wFape8SIEbRp06ZiWikIQpWWd/gvEkYNwpqagqp6DfxXrUMVXA3ThXmYY+aBbAQkQAZtDTQPrb4jSfj27j9C9NkLsHMntVu1wrdGDXxr1AAgJyODc4cOcXr/fr5Z8XqRCb8gVjwJwt2qzL+RCxcuZOvWrfbABsDd3Z0333yTjh078vLLL5drAwVBqHwlVfUGyPjmK5LnTEXOy0NbvxF+n36NpInGcKivPREfCgew5t40CV95rnw6ER3Hqh2R9J42DUe93vY6LBZSLl0ChYKDP/1E8k1WO4FY8SQId6Oi1dpuIiMjg8uXLxfZfvnyZTIzM8ulUYIgVB35Vb3jBvbAHHepwL60D9/lyrQXkfPycGjdDr/Pv8CSNh9DZBtbYKP2Ql1rOTjWLxDYwLUkfJKu5rUkfCXINZpJzTZgsVjYs+8w63/czp59h7FYLKRmG8g12upOWa1W/o5OYczSH1m06zTa6rVw1OvJzczk0smT5GVn4xUcjFe1ajzWvz+Orrbl5WK1kyDcW8r85KZ3796MGDGChQsX0qJFCwD279/PlClT6NOnT7k3UBCEymXNzsJyJQlzbIy9qrfSP4DkN2aSsfpjACQnJzxm9sR04jFkg+1piNLnWdQPLEBSe6H07lu6JHzFKM2KJ1edCtJTiM6y4OBRC3X+uVeSOHXgACHNWhBYuzaZycn88uGHYrWTINzjyhzcLF++nFdeeYVBgwZhupoNVKVSMXLkSN55551yb6AgCJVL6e2E52sarsxS2Kp6D+yB5sFQcnduA0ByA5//5WJNsiW7k7QhqGt9gNKjg/0at5OEr6QVT46urjzQPozzZ8/jERCAWuuKgzuYjQY0man0b/swDR9qzus+or6TINxvyhzcODo6smzZMt555x3Onj0LwAMPPICTk1O5N04QhCrAkonSNQ3Paelcma/HEnuB3NgLgIymnhWPl7ORFAAKVNVeQlV9NpKy/P4eFF7x9OR//sOp/ft5oGnTAjWeclNTqOmioKZTLs8M64VarRb1nQThPnXLU/zj4+OJj4+nbdu2ODg4IMsykiSVZ9sEQagCJG01NA22YUl/Ekl9GVACMs69Dbj0tGUYlhzroKm9EoVL+aeD2Lv/COdOR5O8Zg1NOnfGo1o1mnfvDtgmCF88cYKT+/bx6fwXad2yAREREfZzxWonQbg/lfk3Ojk5mf79+7Nz504kSeL06dPUrFmTkSNH4u7uzsKFCyuinYIgVCJLgokr4Vos8UpQy3i8nIP2IQuyCRReY9DWX4ikUN/8Qrdg35EztOzdm5qNG6NU2+6Rm5VFemIix3bvJuH0aQCSrqQWe75Y7SQI958yr5aaNGkSarWamJgYHK8mwQIYMGAAv/zyS7k2ThCEypcXdYhLfTphiYtHobfi/UY22ocsGM8oufyaE0kv7cOSkFSu97RarXzx8x+MWPQd5x39qdWiBUq1mrSEBJLOn0fr4IDfAw/QsmdPseJJEIQiyvzkZuvWrWzZsoVq1QpOAqxVqxYXLlwot4YJglD5cn7dSuKE/yDn5aEKtOAxNQeFXgZA6W4BWY055rxtFdXXG4vNgwOlL16ZnpXLRz/u4Z9kAw7uHmi9fLFarcSfPIlCrcbvgQfISklh68cfF7viyWq13snuEQShiipzcJOdnV3giU2+lJQUtFptMWcIgnA3yli3hiuvvQIWC5p6ZtxfyEFSg6QNQFPna0wnR+A5LZrkt11RurugcHIu9jqlWcrtqIC81CukKp3QODrh4O6EyWDAKTeNp9s15HuVVKoVT86aMj+MFgThHlTmvwRt2rTh888/t38tSRJWq5UFCxbw+OOPl2vjBEG482RZJvXdBVyZMQksFhxaG/GYlIOkAMmxOtpGv6F0bYWmwTZUgTXwnJ6O+0uXkLQZxV6v8FLu/GEkR1dXHni8AxfOXSApz0K2izcaR0fyMjLwNaXxVp9mLH2xL83qhODnocdBIXO0mBVPDgpZrHgSBKGAMj+5WbBgAU8++SR//fUXRqORqVOn8s8//5CSksLevUUL4wmCcPeQzWauzHqFzHVfAODc3YBzXwuSNhhQom24vUiGYehwwwzDhZdyh40axfHffqNW8+Z4Xje8nZt8mUequ/OfZzqg1VybnFyWFU/5ubcEQbi/lTm4efjhhzl16hTvv/8+Li4uZGVl0adPH8aPH4+/v39FtFEQhDvAmpNN4gujbMn5JBn9kDycu/ijqfMlkuNDt5xhOH8pd8Inn9CyZ0/03t480ru37Z4WC7HHj3P8t99Ys2hKscUrQax4EgShbMoc3MTExBAUFMTMmTOL3RccHFwuDRME4c6xJF8h/j/9MR49AmoZ97G5OHbojCb0EyS1h+2gW8wwHB2bQGirVtRt0wbnqwV3jXl5pMTF8c/u3cSfOgXcuHilIAhCWZR5zk2NGjWKLZyZnJxMjRo1yqVRgiCUP0vqRUwX/i6y3XQhmks922A8egTJ2YrndAPO/eahqfvdtcDmFiQkpzPz45/YlaKgRY8eOLu7k5eVRcK5cwD41axJix49xFJuQRDKXZmf3JSUiTgrKwudTlcujRIEoXxZUi8SN7AV1jQD/l9vRlOjOWDLYZMwvAfW9DyUXlY8pjnj1OEbFPqWBc4v7VJugPNxl3n/h72kqp1R69zRAlmpqaQlJuL/wAM4ubry66pVonilIAgVptTBzeTJkwHb6qhZs2YVWA5usVjYv38/jRo1KvcGCoJw+6wZiVjTDFiSrMQP7Ir/15sxnYsnacIoZIMVVXULzl0NaBt/W2xgc7Ol3H4eejrUdGfV1oPkOnmgcvFCja3eU11PHZfcXHB2dxfFKwVBuCNKHdwcPnwYsD25OXr0KBqNxr5Po9HQsGFDXnnllfJvoSAIt01dvSn+X28mfmBXLElWEoZ3wnxJAVbQ1DOjfsCKU59daGq2KHLujapy1+/Zl8tXUok5e54zCUEo3XxRAbnJV3ispgcjBnfFZJHtwZEoXikIwp1Q6uBm586dAIwYMYJ3330XvV5fbo344IMPeOedd0hISKBhw4a89957tGhR9I9sYWvXrmXgwIH07NmTH3/8sdzaIwj3Ik2N5vh9tYmk5zphOmcLJLRNTciyEveXttmHqgorvJS7w+jR7F2/nkadOpGXlYVXUBDOHra5OXlXkuhUL5ABz/ZAobBN6VMpEcUrBUG4o8r812TJkiWYzeYi21NSUlCpVGUOetatW8fkyZNZvnw5LVu2ZMmSJXTq1ImTJ0/i4+NT4nnnz5/nlVdeoU2bNmV9CYJwX5LNZtLffc0e2Oiam8j7R4XvB++UGNjAdUu5rw4jmU0mmnXvjtd1OWouHj/OE7X9mDy5T7HXEEu5BUG4k8oc3DzzzDN0796dcePGFdi+fv16Nm7cSERERJmut2jRIkaPHs2IESMAWL58OZs3b2blypVMnz692HMsFguDBw8mPDyc3377jbS0tBKvbzAYMBgM9q8zMmxZVE0mU7kn/Mq/nkgkdnOir0qvPPrKkpNF8pj2GPZfAklG28JKdpQzyBKJs+biu7IemupNij03IekKDjoNzq4uZCYnExAaCtiKW148fpwTe3aRefkyQxdOr/Tvp/i5Kj3RV2Uj+qv0KqqvynI9SZZluSwX9/DwYO/evdSpU6fA9hMnTtC6dWuSk0ufq8JoNOLo6Mi3335Lr1697NuHDRtGWloaGzZsKPa8OXPmcOTIEX744QeGDx9OWlpaicNSc+fOJTw8vMj2r776qtgaWYJwr1FnJfPQytkQnQdqmdwRLThT53mg6KrH4pxNyOTvKzIuQbZUD1arlZyL0bTwVVHdp/h6UoIgCOUtJyeHQYMGkZ6eftNRojI/uTEYDMUOS5lMJnJzc8t0rStXrmCxWPD19S2w3dfXlxMnThR7zu+//86nn35KZGRkqe4xY8YM+0ovsD25CQoKomPHjuU6bwhsfbBt2zY6dOiAWq2++Qn3MdFXpXc7fWU6d5jL/xmLJd6I5CijfEDCIeIfwvr5o6neBOOFQyT+52ksl60ovRX4rf4OdVAjACJPxbBiyyHwCMYlyDZ/5vKFCyiQObL9V5S9+3Aq3Z3MlFT+/XkjezZ8gFJZuUNM4ueq9ERflY3or9KrqL7KH3kpjTIHNy1atODjjz/mvffeK7B9+fLlNG3atKyXK5PMzEyGDBnCihUr8PLyKtU5Wq222GrlarW6wn5AK/La9xrRV6VX1r7K/WsTSaNHYE2XUXqCqpYS8zmo9vV39jk26gdbUu2z74gf2BWFoxatuz+nYpN4b+OfmF29UHjZSqpciY1Bo3NA5+xsX8r988fXlnK3HjKcXIuEu65qfC/Fz1Xpib4qG9FfpVfefVWWa5U5uHnzzTcJCwsjKiqKJ598EoAdO3Zw8OBBtm7dWqZreXl5oVQqSUxMLLA9MTERPz+/IsefPXuW8+fP0717d/s2q9VqeyEqFSdPnuSBBx4o60sShHtO9i/LSZr0GrIBVNUV+K38FpNjMHmp8SiDm7Bn3+HrViw1wXn1BuINOt5Zs59cZw+UHr4oAMOVRHo3e4B/verZ89yIpdyCIFR1ZQ5uWrduzR9//MGCBQtYv349Dg4ONPh/e/cdHlWV/3H8PZM26YWQhIQSOgQILcACP0UpguuiWBF0QVRUICrGsrIq4OoKuoKwyoLYV0Usu4KrCGIEVEBQegdpQUiH9GQymbm/PyKjYwImEJiUz+t5eHTunDnznZM8ySf3nntOfDyvvfYabdu2rVZf3t7e9OzZk+TkZOecG4fDQXJyMomJiRXad+jQgR07drgce/zxx8nPz2fu3Lk0a9asuh9HpN7JfesvZD/9KthNeHfxpcnrX1Ea2JKXvtxF2skyku8Z57IQX+uObWn9f5cR1rQpniGReADFWRlc3a0F14+5HoAhP69QrFu5RaQuOKefRt26dWPRokU1UkBSUhJjx44lISGB3r17M2fOHAoLC513T40ZM4aYmBhmzJiBxWKhc+fOLq8PCQkBqHBcpKExDIOTz44id+GXgAnfAeFE/msdZt8wSgqtFRbis5WUEDdgAO379sX7561TirIzGdqxCaNuHeFcpwZ0K7eI1C3nFG4OHjzIG2+8waFDh5gzZw4RERF8/vnnNG/enE6dOlWrr5EjR5KZmcnUqVNJS0ujW7duLF++3DnJOCUlxeWHrIhU5CizkfngQAr/tweAgBvbEf73VZg9y+eb/XohPr+gIPqMGEGjZs2w+PsDkJeZyeEN6/n63b9rPoGI1HnVDjdr1qzhyiuvpH///nz99dc8/fTTREREsG3bNl577TU++uijaheRmJhY6WUogNWrV5/1tW+++Wa130+kLrLnnICiLLxauE7ctxflkD6uFyXfnwKTQUjiQEInf+Cywe3phfhYtYqugwcT06EDAAUnT5Kbmcl3//0vxXl5rP9+Z4UzMyIidU21T4k8+uijPP3006xcudJlf6mBAwfy3Xff1WhxIvKLtNsHc2LklZQe/t55rCzjECeu7VQebDwNwp64ibAHPnQJNgCrN+/jirvuot8NN+AfEkJxfj7phw/jFxzMjq++ovjnWyzTMqq+TpWISG1V7XCzY8cOrr322grHIyIiyMrKqpGiRKQiR+4vu3qXHv4e68H1HL/2D9gOWDH5Gnh3cOB/+Z0ur9lz6Dh3zf6IE0FNiWjZkrLSUo7v24eXjw+RLVti9vCg/0034RccDEBURCN3fDQRkRpV7XATEhJCampqheNbtmwhJiamRooSkYoiX/8Qjwgz9gwH6ROGknrDcOypDswhDjybQcTcL5yXrE7mFfDI/KXMWrUfc3j5sgrHduwgJz2dmPbtKc7PZ/n8+eRnZzs3w2zdrhX9+8S78yOKiNSIaoebm2++mb/85S+kpaVhMplwOBysXbuWhx56iDFjxlyIGkUEcDSJJ+CNJXjH2yk7ZsKRCx6RdsyhZvxe+B/2mO6U2e288N6XJL3zDXn+jfD08qI4K4NBTf1o17Uz4c2akZ+dzcpXXiErJYWVr7ziDDgD77iTvJKKq4+LiNQ11Z5Q/MwzzzBp0iSaNWuG3W4nLi4Ou93O6NGjefzxxy9EjSICLFi9l1YH3qLHATNGsQnPGDtl2WYWRnTEusmONXkZBTYHfo3CsQRYKMnLpXcTf+65dQTWMgeHvtxF2sk81i39jxbiE5F6rdrhxtvbm1deeYUnnniCnTt3UlBQQPfu3au9gJ+IVIdB14MzaPtKMkaxCY8oO2VpZrCbuDQ3nzcPHSIstjV+gM1qpQlF/GXcYAL9fQHw9TZz3+BOWohPRBqEc/5J1rx5c+eKwL+9M0NEao5h2Ol4Yg5eC3ZglJjwaOzAXubBPzp0xRTTF1vvwYR5euJwOPA4lcFfb7yU1k0jKvSjhfhEpKE4p9XxXnvtNTp37ozFYnGuGvzqq6/WdG0iDZ5hL6Z4yZ/werE82JhDHdjsZqYOnU7xHx/B0W8YHp6eFB3Yy6C3H+a2NtZKg42ISENS7TM3U6dOZfbs2dx777307dsXgPXr1/PAAw+QkpLC3/72txovUqQhMmwnyf9gKCefPoRhNUEj2OvdhFcGP0zj1m0AyD95kox1K5h3cDF2P9hXqNW8RUSqHW7mz5/PK6+8wqhRo5zHrr76auLj47n33nsVbkRqgKPkKPmLh3ByZjZGqYnids25L/BSYq8YTmMfH8psNrKOHSOiRQsi+l7B3Ud3cOxECa837+Du0kVE3K7af+bZbDYSEhIqHO/ZsydlZbqNVOR8OQq2kvduf7J/Dja2rp157tIk2g6/AS8fH06lpnLy+HG2rlhBYU4OgY0aEX3zg/g376h1akREOIdw8+c//5n58+dXOL5w4UJuueWWGilKpKGyn/qKvHcHcfK5Yig1kdamAy8Mm4Jv01hsVivphw7h4eXFt4sXa50aEZEzOKe7pV577TW++OIL/vCHPwCwYcMGUlJSGDNmDElJSc52s2fPrpkqReoJoywX7PmYfJpWeK7s+EsULJ3CybneYDNxsGUcS25+Ejy9yD/xE82aNCaoTUuSX31F69SIiJxFtcPNzp076dGjBwAHDx4EIDw8nPDwcHbu3Olsp9vDRVwZZblYd/wJbJl4x6/EbClfSsEwDGxHnqDws1mc+qcflJn4sW0Plo6cQkmZnXZeVtq1tzD4in6UYdY6NSIiv6PaPwlXrVp1IeoQqf/s+dhz0jByUzAYzDbbXFIyTfyh0csEblnOqZfKg82BDr1ZesPDlJzK5pHr+tG6aWOWLVuGxdsTLy8vQOvUiIicTbXDTWZmJo0bN670uR07dtClS5fzLkqkPioq8GPv040ILcgh4tEjBJfdQEimD4FHizn1ki/YTezr+Af+88eJxAcaJN52HWazGZvN5u7SRUTqlGpPKO7SpQufffZZhePPP/88vXv3rpGiROqjkpxczDn5kGmQOSeQFmGl9Cr9JdjsjevHBx0HM6lnE+67cSBms9asERE5F9X+6ZmUlMT111/PhAkTKC4u5vjx4wwaNIjnnnuORYsWXYgaReqFkNjmPOgbR17zUMLuKaRkmyen5pUHm53t+7DJFMjRDeuI76XbuUVEzke1w80jjzzC+vXr+eabb4iPjyc+Ph4fHx+2b9/OtddeeyFqFKkX1m7YTp7tEI0eTMNkM8iZ71cebGI6Epm7m1WZx9h4KJW1G7a7u1QRkTrtnM57t2nThs6dO3PkyBHy8vIYOXIkUVFRNV2bSL1iO7maZU/tITzYStZHIWCHVL8wOh/fQ4c70njpwS1Eh1lJy8h2d6kiInVatcPN2rVriY+P58CBA2zfvp358+dz7733MnLkSE6dOnUhahSp8+yZ/6F3wGMEWso4srst7CzDAJoUnQQg++UAmnuWsmTqHpo11kJ8IiLno9rhZuDAgYwcOZLvvvuOjh07cuedd7JlyxZSUlJ0p5RIJazHXqJk92g8zWVsL+zP8X/7lR/3snBvaG9OBjWGLIOMGUEUZfrTK0ET80VEzke1w80XX3zBzJkznettALRu3Zq1a9dy991312hxInWZYRjk7H4Yx+EkzCaDb/OuZuUbrWiVdhgDSDS1Yk1aPrdZmzoDjudrYeT+lOvu0kVE6rRqh5sBAwZU3pHZzBNPPHHeBYnUB4bDRtr3I/HJmgvA/7LGsi1zDDfuWAnAGr9oNuYbABzJK+GRwC7khkZiC26EJSTYbXWLiNQHVV7E749//CPvvfcewcHlP3hnzpzJPffcQ0hICADZ2dlccskl7N69+4IUKlJXGPYCjn5zJZHmDdgNM+8en0jzFmOZFJVLqrUIvLy4ZfmntEnJdtlCIedICpaQYPwbhbn7I4iI1GlVDjcrVqzAarU6Hz/zzDPcdNNNznBTVlbGvn37arxAkbrEYU3j6NcDifL5EavDwsIf72PE4Em0bRHFiZuuAiBo9G34NG3OpU2bu7y2UeuW7ihZRKTeqXK4MQzjrI9FGoLiomxKrLkEBbWosHllxk9fUbZ/HFE+GRTYg1mw9wEm//kBAgN8Kfr6K6ybNmLysRAy4X53fwwRkXpNWwiLVFFxUTapG67A25HFjXMT+G5ThvO5W68O5MkbNhDuk0+WLYoPj/6Vx+6+C7PZjGEYnJo9A4CgW8fhGaE1oURELqQqTyg2mUyYTKYKx0QaihJrLt6OLBp5pfLavRtpHesDwG3X+TBz5DcEeeWTUtya5Jy/k3T7Pc69oYq++gLr9i2YfP0Iufs+d34EEZEGoVqXpW677TZ8fMp/oJeUlHDPPffg7+8P4DIfR6Q+CgpqwY1zE3jt3o1E+KTzyXT4YHNnJvxhFR4mB7tzu/D4O+35dNFo52sMw+DUnJnlrx9zJx7hjd1TvIhIA1LlMzdjx44lIiKC4OBggoODufXWW4mOjnY+joiIYMyYMedUxLx584iNjcVisdCnTx82btx4xrb//e9/SUhIICQkBH9/f7p168bbb799Tu8rUh1rN2znu00ZXD29PeklUWzNaE9i32Q8TA7Wpydw16xwvvn2mMveUEVfLKN01w5M/v6EjJ/kxupFRBqOKp+5eeONNy5IAe+//z5JSUksWLCAPn36MGfOHIYOHcq+ffuIiIio0D4sLIzHHnuMDh064O3tzaeffsq4ceOIiIhg6NChF6RGEcC559PhY2Us3v8n7o9/FYCvUnqy8BN/9h0ocmlnOBycfKH8rE3wuHvwCGvkhqpFRBqec9o4sybNnj2b8ePHM27cOOLi4liwYAF+fn68/vrrlba/7LLLuPbaa+nYsSOtW7fm/vvvJz4+nm+//fYiVy4NTVREI7x8fLh98jDu7rwIgLVH2jKw+Sb+OX6vcw5OVER5iCn8/BNs+/dgDgwi+I4JbqtbRKShcevdUqWlpWzatIkpU6Y4j5nNZgYPHsz69et/9/WGYfDVV1+xb98+nn322UrbWK1Wl/lAeXl5ANhsNmw223l+Alen+6vpfuujujhW7Tq0ZtSD43igwxNYzEXsPNGYhV80p9WYUhr7ZPDxtKMkLkygd4+OlJaUcHJO+fdkwG134/Dzx3GOn7UujpW7aKyqTmNVPRqvqrtQY1Wd/kyGGxesOXHiBDExMaxbt46+ffs6jz/yyCOsWbOGDRs2VPq63NxcYmJisFqteHh48K9//Yvbb7+90rbTp0/nySefrHB80aJF+Pn51cwHkXov3+7BpkI/bm08lTi/jaTm+PF9wbNY/Cu/rTtk03c0e+cVyvz82Pf4szh89b0mInI+ioqKGD16NLm5uQQFBZ21bZ1c5yYwMJCtW7dSUFBAcnIySUlJtGrVissuu6xC2ylTppCUlOR8nJeXR7Nmzbjiiit+d3Cqy2azsXLlSoYMGeKysahUVJfG6seMPBZ+vZ/LgxcS57eRklIzT/2nJ59++4GzTa/uEcy/ZzOl5jAiu31Ezty/UwY0uud+hl1/w3m9f10aK3fTWFWdxqp6NF5Vd6HG6vSVl6pwa7gJDw/Hw8OD9PR0l+Pp6elERZ15oTOz2UybNm0A6NatG3v27GHGjBmVhhsfHx/n7eu/5uXldcG+QS9k3/VNbR+rTUezeOObfXSyrGJIyLsAbM67k1dfn1thheK8vKNYfIIpW/YFZUcOYQ5rROi4uzHX0Oer7WNVm2isqk5jVT0ar6qr6bGqTl9uDTfe3t707NmT5ORkRowYAYDD4SA5OZnExMQq9+NwOLTOjtS4VXtO8MH3h4jyOsjNYeV3Pa0/djmDbnkJgEv7dXdpHxraCsNm49iLzwMQcve9mP0DLm7RIiLi/stSSUlJjB07loSEBHr37s2cOXMoLCxk3LhxAIwZM4aYmBhmzChfvn7GjBkkJCTQunVrrFYry5Yt4+2332b+/Pnu/BhSjzgMg483H2HlruP4mXMZG/IoFs9Sth1rxiU3LT3ra/P/8x5lx47iER5B0K2VzwMTEZELy+3hZuTIkWRmZjJ16lTS0tLo1q0by5cvJzIyEoCUlBTnMvYAhYWFTJw4kZ9++glfX186dOjAO++8w8iRI931EaQeKbM7+Pe6A2w8nIkZO7f4/YVI/2x+yvan3RVf4eVlOeNrDauVUy/OAiBkwv2YNYlYRMQt3B5uABITE894GWr16tUuj59++mmefvrpi1CV1FfFpWWU2OyE+vtUOP5S8m4OZuZhNpm41ud54sL3U1hixmiziLDGLc7ab94H72JPPY5HZBSBo8deyI8gIiJn4fZF/EQupuLSMv755S5mrdjBycJf5mnlFFl57vNtHMzMw2SCPwV+yv9FrQDggPEY7bpcedZ+HSXF5PxrNgAhE5Mw+5z5DI+IiFxYCjfSoJTY7OSX2MgqKGH2zwEnNaeImcu2kZpbDEAT6w/0DXgBgHU/DaPv0Cd+t9/89/6NPT0NjyYxBN10ywX9DCIicna14rKUyMUS6u9D0tAuzF6xg6yCEp5dtg1rmZ0Smx2ARqYM/tx4KhZvB1tSWnLZqP/+bp+O4iJy5s8t7//eBzFVsvSAiIhcPDpzIw1O2M8BJ9DiRW5xqTPYhFpghMdkokJLOJoZSKerVuHh4Zr/HXl5lKWecDmW987r2LMy8IiOwX/IVRftc4iISOUUbqRB2n4sm/wS131KLit6lM5N08gv9sAr7kOCQ6Ndnnfk5ZE67iZOjLqashPHy48V5JPz8osAGCUlpN11C45qrKIpIiI1T+FGGhTDMPj4h30s3njI5XjLrHlc2mojDgccNj9O644DK7zWUViAPTuLspQjnBh9DWUnjpP779dwnMwGT08cJ7OxZ2fhKCy4WB9HREQqoXAjDUaZ3cGb3+xixe5MACymAvKzs/lpyVTu7lo+t+br3eF0DluGUZZb4fWeTaKJXrQUz+axlKUc4fjNw8mZP+fnzsvwbB5b/nyT6AqvFRGRi0cTiqVBKLGV8fLqvexJzcGEnZsbPU+s91bG/LsFbyZuwcfLYMP+IC6Ny+JUjhel+dmEhgZX6MczOoboRUvLz9ykHHEe92jWojzYRMdcxE8lIiKV0Zkbqfdyi0qZtWIHe1Jz8PYwQ14Ksd5bCTanM3vsDqJCbfyYaqFT83yybJE8s/1RvCxnDime0TGEPz3L5Vjk7PkKNiIitYTCjdRrablFPLd8G8dOFhJo8eLyJt4snv0WV09rx9rdwcQ1Lya30AMfLweZud5cPa0d7734HzZv2X3GPstOHCfr8QddjmU8ONE5yVhERNxL4UbqrUOZefzj8+1kF1hpHGjhkSu7YsvLwWa1cvBoKQs+i2TnET8Op/vQLLyUSfNac/BoKTarlbSM7Er7LDtx3HlJyrN5LNEfLnPOwTk9yVhERNxL4Ubqpa0p2bzwxU4KS8uIDQ/gkSu70jjQQlREIwCiw6w8e8dROrUoolurIgDmTTpIdFj5lgyn2/1aWeoJ12CzaCmWnr1dJhmfGH1NhXVwRETk4lK4kXrn632pvLxmDza7gy5NQ3lgSPmCfQD9+8TTo2MAS6fuoWWklSMZPvxxahyH031oGWll6dQ99IwLpH+f+Ar9mv0D8GgU/stdUT/PsTk9ydizeSwejcIx+wdc1M8rIiKudLeU1Dln2tXbMAw++P4Qq/amAvB/bSMZ1acNHmaTs425LJWPH9+Nn9nKkXQfRvytIydOlv936dQ9xEZa+e9juzCXpYJHU5f+zUFBNHnjAxyFBRVu9/aMjiH6vU8w+wdgDgq6QJ9cRESqQmdupE45067edoeDV77e6ww2wzo35ZY/uAYbADwC8Q9uTpGjCXe//H+cOFkekE6c9OGehZdQ5GiCf3Bz8Ais9P3NQUFnXMfGs0m0go2ISC2gMzdSp/x2V++koV3w8/Zk3le7OJBevu1BgI8nA9o3wWQyVXi9yTMYny6f4mPPZ9WKJqzdsJ20jGyiIhrRv0/8z2dsAjF5VlzjRkRE6gaFG6lTfrur9/Ofb8fL00x6XjEAQRYvHr2qW4VLVr9m8gwGz2A8gEv7dXd98jeXokREpO7RZSmpc07v6h3q583JIqsz2AT7evPoVd0IO0uwERGR+k/hRuqknCIrJTa7y7G7BnRQsBEREYUbqXu2Hytfw6b4N+HmjW/3u0wyFhGRhknhRuqUb/anMX9V+Ro2AI38fXh4WDzhARbnJGMFHBGRhk3hRuoEwzD4ZOtR3v3uR4yfjzXy9+HBYfG0jggiaWgXl4BzSgFHRKTBUriRWs/ucPD2ugMs234MgBBfb2ewOT3H5vQk4/AAC4EWLyxeHu4sWURE3Ei3gkutVmKz88rXe9l1/BQmE4zu04aE2PBKVygO8/fhwaFdsHh54Outb20RkYZKvwGk1sorLmXeV7s5ml2Al4eZ8Ze2J75Z+YaWZwovZ1vfRkREGgaFG6mVMvKKeTF5F5n5Jfj7eJI4sBMtG1e+JYKIiMivKdxIrXM4K595ybsosJYRHuDDvYM7Exnk6+6yRESkjlC4EbcoKS2r9PiOn06ycM1ebHYHzRsFkDgwjiBf74tcnYiI1GW6W0ouuuLSMhas3gvAqaJS5/FvD6Qxf9VubHYHvl4eTLyso4KNiIhUm8KNXHQlNjv5VhsALyXvIrughE+3pfDO+h9x/LyIjZ+3p3M9GxERkeqoFeFm3rx5xMbGYrFY6NOnDxs3bjxj21deeYVLLrmE0NBQQkNDGTx48FnbS+0T6u9D4qBOAGQXlPC3T7bw6bYU5/On17DRnU8iInIu3B5u3n//fZKSkpg2bRqbN2+ma9euDB06lIyMjErbr169mlGjRrFq1SrWr19Ps2bNuOKKKzh+/PhFrlzOR6ifN2UGeHh4YC37ZY+o8ACLy+J8IiIi1eX2cDN79mzGjx/PuHHjiIuLY8GCBfj5+fH6669X2v7dd99l4sSJdOvWjQ4dOvDqq6/icDhITk6+yJXL+cgvsbGxMJhSu+vFp3H/107BRkREzotb75YqLS1l06ZNTJkyxXnMbDYzePBg1q9fX6U+ioqKsNlshIWFVfq81WrFav1ln6G8vDwAbDYbNpvtPKqv6HR/Nd1vfZOZX8K/Vu8l1+6JCTDjwPTzc299u5fEQZ0I9dNE4tP0fVV1Gquq01hVj8ar6i7UWFWnP5NhGG6bt3nixAliYmJYt24dffv2dR5/5JFHWLNmDRs2bPjdPiZOnMiKFSvYtWsXFoulwvPTp0/nySefrHB80aJF+Pn5nd8HkGrLKfNgU1EQpYYZX5OdBP88Ajwc7i5LRERquaKiIkaPHk1ubi5BQUFnbVun17mZOXMmixcvZvXq1ZUGG4ApU6aQlJTkfJyXl+ecp/N7g1NdNpuNlStXMmTIELy8vGq07/pg14kckr89QKnhwNMMff1z2W1EMPGyLoT6eXOqqJSXkndxsqCEsAAL9w7qRIjO4Oj7qho0VlWnsaoejVfVXaixOn3lpSrcGm7Cw8Px8PAgPT3d5Xh6ejpRUVFnfe3zzz/PzJkz+fLLL4mPjz9jOx8fH3x8Ks7h8PLyumDfoBey77pq3Y/pvLP+AA4D2kcFU1pqw8eezcTLuhAR7A9ARLAXk4d2ZfaKHfhbvAjw9cHLq07n7xql76uq01hVncaqejReVVfTY1Wdvtw6odjb25uePXu6TAY+PTn415epfuu5557jqaeeYvny5SQkJFyMUuUcGYbBZ9tT+Pe68mDTp1Vj7h3UiYmXdwSoMLfm9M7e9w3upJ29RUTknLj9t0dSUhJjx44lISGB3r17M2fOHAoLCxk3bhwAY8aMISYmhhkzZgDw7LPPMnXqVBYtWkRsbCxpaWkABAQEEBAQ4LbPIRXZHQaLNxzkmwPlX6NhnZtyTfcWmEwmLGcJLlrfRkREzofbw83IkSPJzMxk6tSppKWl0a1bN5YvX05kZCQAKSkpmM2/nGCaP38+paWl3HDDDS79TJs2jenTp1/M0uUsSsvsvPr1Prb/dBITMLJ3ay7r0MTdZYmISAPg9nADkJiYSGJiYqXPrV692uXxkSNHLnxBcl4KSmzM+2o3h7Py8fIwc/sl7ejePNzdZYmISANRK8KN1D3FpWWU2OwVLiFl5pcwZ+UOsgus+Hl7MnFgHG0iavauNBERkbNRuJFqKy4t459f7iK/xEbS0C7OFYWPZhfwzy93Umgtw9Ns4r5BnYhtHOjmakVEpKFx+/YLUveU2Ozkl9jIKihh9oodnCy0suv4KWYt306htQyAQIs3wVqjRkRE3EBnbqTaQv19SBrahdkrdpBVUMIzn26lqNSG4+e1rsP8fXhIu3qLiIib6MyNnJMwfx8euKIzft6eFFh/CTaNfg422vxSRETcReFGzonDYbBi508UlZa5HL/9kvYKNiIi4lYKN1JtpWV2Xl6zh6/3p1V47o1v93Oy0FrJq0RERC4OhRuploISG3NW7mTbsZPOY+EBFh4eFk94gMVlkrGIiIg7KNxIlWUVlPCP5ds5lJmP6edj4QEWkoZ2oXVEEElDu7gEnFMKOCIi4gYKN1IlKdkFPPf5NtLzignx8yY6xM8ZbE7PsQn7+S6q8AALgRYvLF4ebq5aREQaIt0KLr9r94lTvLx6L9YyOzGhfiQO6oTF06PSFYpP7+pt8fLQrt4iIuIW+u0jZ/XdwQz+ve4ADsOgfVQw91zW0RlazhRetL6NiIi4k8KNVMowym/1XrLlKAC9Yhszpn9bvDx0JVNERGo3hZsG6kwbXwJkF5Tw+Y5jfHsgHYAhcTFc2zMWs8lUoa2IiEhto3DTAJ1p40uA9Lxi/v6/LZTaHZiAG3q1ZFDHGPcVKyIiUk26xtAAVbbxJcBPpwp56pPNlNodAIzq01rBRkRE6hyFmwYo9Fe3bJ8OOJuPZjHj062UOQxMwJ2XtufS9k3cXaqIiEi1Kdw0UGG/CTgL1+zFbhiYTXDv4E4kxDZ2d4kiIiLnROGmAQvz92FgR9ezM3cN6EBcdKibKhIRETl/CjcN2Fd7TvDB94ddjn30wxHtCyUiInWawk0DZBgGSzYf4YPvDwHg7WnmgSs6a+NLERGpFxRuGhiHw+Df6w6wfOdPAFi8PJh6dQ/aR4Vo40sREakXFG4aEJvdwavf7GX9wQwA/L09mXp1D8IDLIA2vhQRkfpBi/g1EIXWMuav2s2PGXl4mk2M6tOauOhQbXwpIiL1jn57NQAnC0p4MXk3qblF+Hp5cM/lHWkfFXLG9tr4UkRE6jKFm3rup1OFvPjlLnKLSwnx8+beQZ2ICfV3d1kiIiIXjMJNPbYvLYf5q/ZQYrMTHeJH4qBOLvtIiYiI1EcKN3XY2Xb2Xr33BB/+cBi7w6BtZBD3XBaHv4++3CIiUv/pt10ddbadvZduOcrnO44B0LVZGHde2gEvD90YJyIiDYN+49VRle3s7TAM3l53wBlsLF4e3NSrlYKNiIg0KDpzU0ed3tl79oodZBWUMGv5dsIDLexLywXAz9uTx/7UjUY/r2EjIiLSULj9T/p58+YRGxuLxWKhT58+bNy48Yxtd+3axfXXX09sbCwmk4k5c+ZcvEJrodOL7oX5+5BdaHUGmwAfLx4f3l3BRkREGiS3hpv333+fpKQkpk2bxubNm+natStDhw4lIyOj0vZFRUW0atWKmTNnEhUVdZGrrb3MJtfHEy7vqLuiRESkwXLrZanZs2czfvx4xo0bB8CCBQv47LPPeP3113n00UcrtO/Vqxe9evUCqPT5ylitVqzWX/ZIysvLA8Bms2Gz2c73I7g43V9N93smJ3KKmLdqL3klNsDAAwMT8Na3e0kc1IlQP++LUse5uNhjVZdprKpOY1V1Gqvq0XhV3YUaq+r0ZzIMw6jRd6+i0tJS/Pz8+OijjxgxYoTz+NixY8nJyWHp0qVnfX1sbCyTJ09m8uTJZ203ffp0nnzyyQrHFy1ahJ+f37mUXitkl3myuTCQMsz4m8vo5Z+Pr9nh7rJEREQuiKKiIkaPHk1ubi5BQUFnbeu2MzdZWVnY7XYiIyNdjkdGRrJ3794ae58pU6aQlJTkfJyXl0ezZs244oorfndwqstms7Fy5UqGDBmCl5dXjfb9a5tTsvli/UHsGICBr68vAwf2ItTPm1NFpbyUvIuTBSWEBVi4d1AnQmrhGZyLNVb1gcaq6jRWVaexqh6NV9VdqLE6feWlKur93VI+Pj74+FScf+Ll5XXBvkEvZN9f7j7ORz8cBsrviPL18iBpWLxzjk1EsBeTh3Zl9ood+Fu8CPD1wcur9n6ZL+RY1Tcaq6rTWFWdxqp6NF5VV9NjVZ2+3PZbLzw8HA8PD9LT012Op6ena7JwJRyGwX83HebL3ScAuKx9E4Z3bU6p3aGdvUVERH7FbXdLeXt707NnT5KTk53HHA4HycnJ9O3b111l1Uo2u4PXv9nnDDbX9ohlZO9W+Fu8zriDd6i/j4KNiIg0SG797ZeUlMTYsWNJSEigd+/ezJkzh8LCQufdU2PGjCEmJoYZM2YA5ZOQd+/e7fz/48ePs3XrVgICAmjTpo3bPseFVFRaxoJVe9ifnovZZGJs/7b0aRXh7rJERERqLbeGm5EjR5KZmcnUqVNJS0ujW7duLF++3DnJOCUlBbP5l5NLJ06coHv37s7Hzz//PM8//zwDBgxg9erVF7v8C+5UkZWXvtzF8ZwiLF4e3DWgA3HRoe4uS0REpFZz+3WLxMREEhMTK33ut4ElNjYWN925fkGcbVfvvak5vLl2PzlFpQT5enHvoE40CwtwQ5UiIiJ1i9vDTUN1tl29Nx3J4tWv92IAEYEW7hvSmXBtpSAiIlIlbt9bqqGqbFdvgDX7Unnl52DjaTZx14COCjYiIiLVoHDjJqd39Q4PsDgDzgcbD/HehoMAeHuYeeLqHjQN83dzpSIiInWLwo0bnd7Vu5G/D1kFJXy1t/xWb4uXB1Ov6UFkkK+bKxQREal7FG7cLMjiRcRvQkziwDhdihIRETlHCjduVFxaxgtf7GRPao7L8TfXHnDOwREREZHqUbhxk5wiK89+vo2DmeUbgQVZvHh4WLzLHBwFHBERkepTuHGD1JwiZi7bRlpuMQAhvt48elU3WkcEVZhkfEoBR0REpFoUbi6yH9Nz+cfy7eQUleLlYSLUz5tH/tjVuc5N2K/uogq0eGHx8nBzxSIiInWLFvG7iLYczeK1b/ZR5jBoGR7I7Ze0w9Ns1q7eIiIiNUi/OS+SVXtP8MHGQxhAfNMw7ry0Pd6eZz4rc6bdvkVEROTsFG4uMIdhsHTzUVbs+gmAS9pFcXPv1niYTW6uTEREpH5SuLmAyuwO3l5/gA2HMgG4ulsLruzSFJNJwUZERORCUbg5T2fa2bu4tIx5X+3mx4w8zCa4tW9b+rWJdFOVIiIiDYfCzXn47c7egd7lN5/lFpcyb9U+UnOLMAF3XtKeHrGN3VusiIhIA6Fbwc/Db3f2PlVUSoHdzPMrdpGaWwRAkK83LRsHublSERGRhkPh5jz8dmfvF77YwXeFweQUl5Y/7+fNX/7YVXc+iYiIXEQKN+fp9KJ7QRYvThXbsBlmwCDM34eHr/xlcT4RERG5OBRuakCYvw839WoFQGPPUjwwuOOS9go2IiIibqBwUwNOFlpZsuUoHhj08MvHBLzx7X5tfCkiIuIGCjfn6WShldkrdpBVUEKjAAtmE4RpZ28RERG3Ubg5D6d+FWzCAywkDuoEQOKgTtrZW0RExE0Ubs6DxcuDQIsX4QEWkoZ2IdTPGyi/S0o7e4uIiLiHFvE7D77entw3uJNzhWKbzeZ8Tjt7i4iIuId+654nX2/PM4YXrW8jIiJy8emylIiIiNQrCjciIiJSryjciIiISL2icCMiIiL1isKNiIiI1Cu1ItzMmzeP2NhYLBYLffr0YePGjWdt/+GHH9KhQwcsFgtdunRh2bJlF6lSERERqe3cHm7ef/99kpKSmDZtGps3b6Zr164MHTqUjIyMStuvW7eOUaNGcccdd7BlyxZGjBjBiBEj2Llz50WuXERERGojt4eb2bNnM378eMaNG0dcXBwLFizAz8+P119/vdL2c+fOZdiwYTz88MN07NiRp556ih49evDSSy9d5MpFRESkNnLrIn6lpaVs2rSJKVOmOI+ZzWYGDx7M+vXrK33N+vXrSUpKcjk2dOhQlixZUml7q9WK1frL3k55eXkA2Gw2lxWFa8Lp/mq63/pIY1V1Gquq01hVncaqejReVXehxqo6/bk13GRlZWG324mMjHQ5HhkZyd69eyt9TVpaWqXt09LSKm0/Y8YMnnzyyQrHlyxZgp+f3zlWfnZLly69IP3WRxqrqtNYVZ3Gquo0VtWj8aq6mh6roqIiAAzD+N229X77hSlTpric6Tl+/DhxcXHceeedbqxKREREzkV+fj7BwcFnbePWcBMeHo6Hhwfp6ekux9PT04mKiqr0NVFRUdVq7+Pjg4/PL3s8BQQEcOzYMQIDAzGZTOf5CVzl5eXRrFkzjh07RlBQUI32Xd9orKpOY1V1Gquq01hVj8ar6i7UWBmGQX5+PtHR0b/b1q3hxtvbm549e5KcnMyIESMAcDgcJCcnk5iYWOlr+vbtS3JyMpMnT3YeW7lyJX379q3Se5rNZpo2bXq+pZ9VUFCQvvmrSGNVdRqrqtNYVZ3Gqno0XlV3Icbq987YnOb2y1JJSUmMHTuWhIQEevfuzZw5cygsLGTcuHEAjBkzhpiYGGbMmAHA/fffz4ABA5g1axZXXXUVixcv5ocffmDhwoXu/BgiIiJSS7g93IwcOZLMzEymTp1KWloa3bp1Y/ny5c5JwykpKZjNv9yx3q9fPxYtWsTjjz/OX//6V9q2bcuSJUvo3Lmzuz6CiIiI1CJuDzcAiYmJZ7wMtXr16grHbrzxRm688cYLXFX1+fj4MG3aNJc5PlI5jVXVaayqTmNVdRqr6tF4VV1tGCuTUZV7qkRERETqCLevUCwiIiJSkxRuREREpF5RuBEREZF6ReFGRERE6hWFmxoyb948YmNjsVgs9OnTh40bN7q7pFrp66+/Zvjw4URHR2Mymc644amU74vWq1cvAgMDiYiIYMSIEezbt8/dZdVK8+fPJz4+3rloWN++ffn888/dXVadMHPmTEwmk8vCqFJu+vTpmEwml38dOnRwd1m11vHjx7n11ltp1KgRvr6+dOnShR9++MEttSjc1ID333+fpKQkpk2bxubNm+natStDhw4lIyPD3aXVOoWFhXTt2pV58+a5u5Rab82aNUyaNInvvvuOlStXYrPZuOKKKygsLHR3abVO06ZNmTlzJps2beKHH35g4MCBXHPNNezatcvdpdVq33//PS+//DLx8fHuLqXW6tSpE6mpqc5/3377rbtLqpVOnTpF//798fLy4vPPP2f37t3MmjWL0NBQ9xRkyHnr3bu3MWnSJOdju91uREdHGzNmzHBjVbUfYHz88cfuLqPOyMjIMABjzZo17i6lTggNDTVeffVVd5dRa+Xn5xtt27Y1Vq5caQwYMMC4//773V1SrTNt2jSja9eu7i6jTvjLX/5i/N///Z+7y3DSmZvzVFpayqZNmxg8eLDzmNlsZvDgwaxfv96NlUl9k5ubC0BYWJibK6nd7HY7ixcvprCwsMp7zjVEkyZN4qqrrnL52SUVHThwgOjoaFq1asUtt9xCSkqKu0uqlT755BMSEhK48cYbiYiIoHv37rzyyituq0fh5jxlZWVht9ud20WcFhkZSVpampuqkvrG4XAwefJk+vfvr61GzmDHjh0EBATg4+PDPffcw8cff0xcXJy7y6qVFi9ezObNm5179knl+vTpw5tvvsny5cuZP38+hw8f5pJLLiE/P9/dpdU6hw4dYv78+bRt25YVK1YwYcIE7rvvPt566y231FMrtl8QkbObNGkSO3fu1PX+s2jfvj1bt24lNzeXjz76iLFjx7JmzRoFnN84duwY999/PytXrsRisbi7nFrtyiuvdP5/fHw8ffr0oUWLFnzwwQfccccdbqys9nE4HCQkJPDMM88A0L17d3bu3MmCBQsYO3bsRa9HZ27OU3h4OB4eHqSnp7scT09PJyoqyk1VSX2SmJjIp59+yqpVq2jatKm7y6m1vL29adOmDT179mTGjBl07dqVuXPnurusWmfTpk1kZGTQo0cPPD098fT0ZM2aNfzzn//E09MTu93u7hJrrZCQENq1a8ePP/7o7lJqnSZNmlT4Q6Jjx45uu4yncHOevL296dmzJ8nJyc5jDoeD5ORkXe+X82IYBomJiXz88cd89dVXtGzZ0t0l1SkOhwOr1eruMmqdQYMGsWPHDrZu3er8l5CQwC233MLWrVvx8PBwd4m1VkFBAQcPHqRJkybuLqXW6d+/f4WlKvbv30+LFi3cUo8uS9WApKQkxo4dS0JCAr1792bOnDkUFhYybtw4d5dW6xQUFLj81XP48GG2bt1KWFgYzZs3d2Nltc+kSZNYtGgRS5cuJTAw0DmHKzg4GF9fXzdXV7tMmTKFK6+8kubNm5Ofn8+iRYtYvXo1K1ascHdptU5gYGCFeVv+/v40atRI87l+46GHHmL48OG0aNGCEydOMG3aNDw8PBg1apS7S6t1HnjgAfr168czzzzDTTfdxMaNG1m4cCELFy50T0Huvl2rvnjxxReN5s2bG97e3kbv3r2N7777zt0l1UqrVq0ygAr/xo4d6+7Sap3Kxgkw3njjDXeXVuvcfvvtRosWLQxvb2+jcePGxqBBg4wvvvjC3WXVGboVvHIjR440mjRpYnh7exsxMTHGyJEjjR9//NHdZdVa//vf/4zOnTsbPj4+RocOHYyFCxe6rRaTYRiGe2KViIiISM3TnBsRERGpVxRuREREpF5RuBEREZF6ReFGRERE6hWFGxEREalXFG5ERESkXlG4ERERkXpF4UZERETqFYUbEblgjhw5gslkYuvWrbWm79jYWObMmVNjdaxevRqTyUROTk6t6EdEFG5E6pXMzEwmTJhA8+bN8fHxISoqiqFDh7J27VpnG5PJxJIlS9xXZD3Tr18/UlNTCQ4OrvJrLrvsMiZPnnze/YhI5bRxpkg9cv3111NaWspbb71Fq1atSE9PJzk5mezsbHeXds5KS0vx9vZ2dxln5O3tTVRUVK3pR0R05kak3sjJyeGbb77h2Wef5fLLL6dFixb07t2bKVOmcPXVVwPll2QArr32Wkwmk/PxwYMHueaaa4iMjCQgIIBevXrx5ZdfuvQfGxvLM888w+23305gYCDNmzevsOPvxo0b6d69OxaLhYSEBLZs2eLyvN1u54477qBly5b4+vrSvn175s6d69LmtttuY8SIEfz9738nOjqa9u3bV6nvymRkZDB8+HB8fX1p2bIl7777bqXjduedd9K4cWOCgoIYOHAg27ZtA2D//v2YTCb27t3r8poXXniB1q1bAxUvJ2VnZzNq1ChiYmLw8/OjS5cuvPfeey6fb82aNcydOxeTyYTJZOLIkSOVXpb6z3/+Q6dOnfDx8SE2NpZZs2a51FGVr4lIQ6RwI1JPBAQEEBAQwJIlS7BarZW2+f777wF44403SE1NdT4uKCjgj3/8I8nJyWzZsoVhw4YxfPhwUlJSXF4/a9YsZ7CYOHEiEyZMYN++fc4+/vSnPxEXF8emTZuYPn06Dz30kMvrHQ4HTZs25cMPP2T37t1MnTqVv/71r3zwwQcu7ZKTk9m3bx8rV67k008/rVLflbnttts4duwYq1at4qOPPuJf//oXGRkZLm1uvPFGMjIy+Pzzz9m0aRM9evRg0KBBnDx5knbt2pGQkFAhFL377ruMHj260vcsKSmhZ8+efPbZZ+zcuZO77rqLP//5z2zcuBGAuXPn0rdvX8aPH09qaiqpqak0a9asQj+bNm3ipptu4uabb2bHjh1Mnz6dJ554gjfffLPKXxORBstt+5GLSI376KOPjNDQUMNisRj9+vUzpkyZYmzbts2lDWB8/PHHv9tXp06djBdffNH5uEWLFsatt97qfOxwOIyIiAhj/vz5hmEYxssvv2w0atTIKC4udraZP3++ARhbtmw54/tMmjTJuP76652Px44da0RGRhpWq9V57Fz63rdvnwEYGzdudB7bs2ePARgvvPCCYRiG8c033xhBQUFGSUmJy2tbt25tvPzyy4ZhGMYLL7xgtG7dukK/e/bsMQzDMFatWmUAxqlTp874Ga+66irjwQcfdD4eMGCAcf/997u0+W0/o0ePNoYMGeLS5uGHHzbi4uKcj3/vayLSUOnMjUg9cv3113PixAk++eQThg0bxurVq+nRo0eFv/Z/q6CggIceeoiOHTsSEhJCQEAAe/bsqXDmJj4+3vn/JpOJqKgo55mQPXv2EB8fj8Vicbbp27dvhfeaN28ePXv2pHHjxgQEBLBw4cIK79OlSxeXeTZV7fvX9uzZg6enJz179nQe69ChAyEhIc7H27Zto6CggEaNGjnPfAUEBHD48GEOHjwIwM0338yRI0f47rvvgPKzNj169KBDhw6Vvq/dbuepp56iS5cuhIWFERAQwIoVKyp8xt+zZ88e+vfv73Ksf//+HDhwALvd7jx2tq+JSEOlCcUi9YzFYmHIkCEMGTKEJ554gjvvvJNp06Zx2223nfE1Dz30ECtXruT555+nTZs2+Pr6csMNN1BaWurSzsvLy+WxyWTC4XBUubbFixfz0EMPMWvWLPr27UtgYCD/+Mc/2LBhg0s7f3//Kvd5PgoKCmjSpAmrV6+u8NzpEBQVFcXAgQNZtGgRf/jDH1i0aBETJkw4Y5//+Mc/mDt3LnPmzKFLly74+/szefLkCmNZU873ayJSHynciNRzcXFxLrd+e3l5ufzlD7B27Vpuu+02rr32WqD8l/6RI0eq9T4dO3bk7bffpqSkxHmG5fTZjl+/T79+/Zg4caLz2OkzJOfb92916NCBsrIyNm3aRK9evQDYt2+fy4TdHj16kJaWhqenp3NydWVuueUWHnnkEUaNGsWhQ4e4+eabz9h27dq1XHPNNdx6661A+Tyj/fv3ExcX52zj7e1d4WtQ2Wf+9S38p/tu164dHh4eZ32tSEOny1Ii9UR2djYDBw7knXfeYfv27Rw+fJgPP/yQ5557jmuuucbZLjY2luTkZNLS0jh16hQAbdu25b///S9bt25l27ZtjB49utp//Y8ePRqTycT48ePZvXs3y5Yt4/nnn3dp07ZtW3744QdWrFjB/v37eeKJJ5yTms+3799q3749w4YN4+6772bDhg1s2rSJO++8E19fX2ebwYMH07dvX0aMGMEXX3zBkSNHWLduHY899hg//PCDs911111Hfn4+EyZM4PLLLyc6OvqM79u2bVtWrlzJunXr2LNnD3fffTfp6ekubWJjY9mwYQNHjhwhKyur0rF+8MEHSU5O5qmnnmL//v289dZbvPTSS1WaSC3S0CnciNQTAQEB9OnThxdeeIFLL72Uzp0788QTTzB+/HheeuklZ7tZs2axcuVKmjVrRvfu3QGYPXs2oaGh9OvXj+HDhzN06FB69OhR7ff/3//+x44dO+jevTuPPfYYzz77rEubu+++m+uuu46RI0fSp08fsrOzXc7inE/flXnjjTeIjo5mwIABXHfdddx1111EREQ4nzeZTCxbtoxLL72UcePG0a5dO26++WaOHj1KZGSks11gYCDDhw9n27Zt3HLLLWd9z8cff5wePXowdOhQLrvsMqKiohgxYoRLm4ceeggPDw/i4uJo3LhxpfNxevTowQcffMDixYvp3LkzU6dO5W9/+9tZLy+KSDmTYRiGu4sQERERqSk6cyMiIiL1isKNiIiI1CsKNyIiIlKvKNyIiIhIvaJwIyIiIvWKwo2IiIjUKwo3IiIiUq8o3IiIiEi9onAjIiIi9YrCjYiIiNQrCjciIiJSr/w/Fq0WfvbPDWsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "colors = [\"#0b1a3c\", \"#67a1c3\", \"#f6c105\", \"#dd2113\"]\n", "markers = [\"o\", \"x\", \"x\", \"x\"]\n", "fig, axs = plt.subplots()\n", "\n", "for column, color, marker in zip(returns.columns, colors, markers):\n", " axs.scatter(x=returns.index, y=returns[column], marker=marker, color=color)\n", " label = (\n", " \"without risk-free asset\"\n", " if column == \"[0, 0]\"\n", " else f\"risk-free asset in {column}\"\n", " )\n", " axs.plot(\n", " returns.index,\n", " returns[column],\n", " label=label,\n", " color=color,\n", " )\n", "axs.set_xlabel(\"Standard deviation\")\n", "axs.set_ylabel(\"Expected return\")\n", "axs.legend()\n", "axs.grid()\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "b58b19a9", "metadata": {}, "source": [ "If we allow investing in a risk-free asset, the portfolio variance can be arbitrarily small. If one invests all capital into the risk-free asset, the variance (and standard deviation) is 0.\n", "Without that possibility (i.e., $x_\\text{rf}\\leq 0$), the minimal possible risk is greater than 0.\n", "If we can invest in the risk-free asset, the left-most part of the efficient frontier is a straight line from the portfolio that invests the entire capital into the risk-free asset to the minimal-variance portfolio.\n", "If we allow higher risk, including the ability to borrow cash, this shifts the efficient frontier towards higher returns." ] }, { "cell_type": "markdown", "id": "032b2f1e", "metadata": {}, "source": [ "## Takeaways\n", "* Leverage can be modeled by adding a variable for the risk-free portion that can take negative values.\n", "* Different strategies can be tested by modifying bounds and right-hand sides; there is no need to rebuild the model." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 5 }