{ "cells": [ { "cell_type": "markdown", "id": "21417e28", "metadata": {}, "source": [ "# Leverage by Short-Selling\n", "\n", "The *standard mean-variance (Markowitz) portfolio selection model* determines an optimal investment portfolio that balances risk and expected return. In this notebook, we maximize the portfolio's expected return while constraining the admissible variance (risk) to a given maximum level. Please refer to the [annotated list of references](../literature.rst#portfolio-optimization) for more background information on portfolio optimization.\n", "\n", "This notebook adds *leverage* and *short-selling* to this basic model.\n", "In short-selling, assets are borrowed and sold, with the intention of repurchasing them later at a lower price. This augments traditional long-only investing by taking advantage of both rising and falling prices.\n", "Leverage means using borrowed capital as a funding source to increase the potential return.\n", "\n", "In the 130/30 investment strategy, a ratio of up to 130% of the starting capital is allocated to long positions. This is accomplished by short-selling up to 30% of the starting capital." ] }, { "cell_type": "code", "execution_count": 1, "id": "31d52539", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:05:02.642965Z", "iopub.status.busy": "2025-01-31T10:05:02.642714Z", "iopub.status.idle": "2025-01-31T10:05:03.431480Z", "shell.execute_reply": "2025-01-31T10:05:03.430757Z" }, "nbsphinx": "hidden" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: numpy in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (2.2.2)\r\n", "Requirement already satisfied: scipy in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (1.15.1)\r\n", "Requirement already satisfied: gurobipy in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (11.0.3)\r\n", "Requirement already satisfied: pandas in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (2.2.3)\r\n", "Requirement already satisfied: matplotlib in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (3.10.0)\r\n", "Requirement already satisfied: python-dateutil>=2.8.2 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from pandas) (2.9.0.post0)\r\n", "Requirement already satisfied: pytz>=2020.1 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from pandas) (2025.1)\r\n", "Requirement already satisfied: tzdata>=2022.7 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from pandas) (2025.1)\r\n", "Requirement already satisfied: contourpy>=1.0.1 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from matplotlib) (1.3.1)\r\n", "Requirement already satisfied: cycler>=0.10 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from matplotlib) (0.12.1)\r\n", "Requirement already satisfied: fonttools>=4.22.0 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from matplotlib) (4.55.8)\r\n", "Requirement already satisfied: kiwisolver>=1.3.1 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from matplotlib) (1.4.8)\r\n", "Requirement already satisfied: packaging>=20.0 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from matplotlib) (24.2)\r\n", "Requirement already satisfied: pillow>=8 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from matplotlib) (11.1.0)\r\n", "Requirement already satisfied: pyparsing>=2.3.1 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from matplotlib) (3.2.1)\r\n", "Requirement already satisfied: six>=1.5 in /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ "# Install dependencies\n", "%pip install numpy scipy gurobipy pandas matplotlib" ] }, { "cell_type": "code", "execution_count": 2, "id": "73c48d29", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:05:03.433583Z", "iopub.status.busy": "2025-01-31T10:05:03.433380Z", "iopub.status.idle": "2025-01-31T10:05:04.075972Z", "shell.execute_reply": "2025-01-31T10:05:04.075302Z" } }, "outputs": [], "source": [ "import gurobipy as gp\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 3, "id": "652f76cb", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:05:04.078388Z", "iopub.status.busy": "2025-01-31T10:05:04.077953Z", "iopub.status.idle": "2025-01-31T10:05:04.086426Z", "shell.execute_reply": "2025-01-31T10:05:04.085835Z" }, "nbsphinx": "hidden" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Set parameter WLSAccessID\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Set parameter WLSSecret\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Set parameter LicenseID to value 2443533\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "WLS license 2443533 - registered to Gurobi GmbH\n" ] } ], "source": [ "# Hidden cell to avoid licensing messages\n", "# when docs are generated.\n", "with gp.Model():\n", " pass" ] }, { "cell_type": "markdown", "id": "c9c5ba95", "metadata": {}, "source": [ "## Input Data\n", "\n", "The following input data is used within the model:\n", "\n", "- $S$: set of stocks\n", "- $\\mu$: vector of expected returns\n", "- $\\Sigma$: PSD variance-covariance matrix\n", " - $\\sigma_{ij}$ covariance between returns of assets $i$ and $j$\n", " - $\\sigma_{ii}$ variance of return of asset $i$" ] }, { "cell_type": "code", "execution_count": 4, "id": "23c62970", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:05:04.088696Z", "iopub.status.busy": "2025-01-31T10:05:04.088154Z", "iopub.status.idle": "2025-01-31T10:05:04.093973Z", "shell.execute_reply": "2025-01-31T10:05:04.093389Z" } }, "outputs": [], "source": [ "# Import some example data set\n", "Sigma = pd.read_pickle(\"sigma.pkl\")\n", "mu = pd.read_pickle(\"mu.pkl\")" ] }, { "cell_type": "markdown", "id": "0a3b5325", "metadata": {}, "source": [ "## Formulation\n", "Mathematically, this results in a convex quadratically constrained optimization problem.\n", "\n", "### Model Parameters\n", "\n", "The following parameters are used within the model:\n", "\n", "- $\\bar\\sigma^2$: maximal admissible variance for the portfolio return\n", "- $s_\\text{total}$: maximal total short ratio allowed\n", "- $s_i$: maximal short ratio for asset $i$\n", "- $\\ell_i$: maximal long ratio (i.e., position size) for asset $i$\n", "\n", "To model a 130/30-portfolio, we will use $s_\\text{total}=0.3$ in our example. In this strategy, we use the cash from short-selling to buy assets on the long side." ] }, { "cell_type": "code", "execution_count": 5, "id": "d2a604e0", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:05:04.095921Z", "iopub.status.busy": "2025-01-31T10:05:04.095734Z", "iopub.status.idle": "2025-01-31T10:05:04.098837Z", "shell.execute_reply": "2025-01-31T10:05:04.098429Z" } }, "outputs": [], "source": [ "# Values for the model parameters:\n", "V = 4.0 # Maximal admissible variance (sigma^2)\n", "s_total = 0.3 # Maximal short ratio\n", "\n", "s = 0.1 * np.ones(mu.shape) # Maximal short per asset\n", "l = 0.2 * np.ones(mu.shape) # Maximal long per asset" ] }, { "cell_type": "markdown", "id": "68a5a517", "metadata": {}, "source": [ "### Decision Variables\n", "We need three sets of decision variables:\n", "\n", "1. The proportions of capital invested among the considered stocks. The corresponding vector of positions is denoted by $x$ with its component $x_i$ denoting the proportion of capital invested in stock $i$. Since we allow short positions, $x_i$ may be negative.\n", "\n", "The other sets split the position into long and short components:\n", "\n", "2. The *long* proportions of each stock in the portfolio. The corresponding vector of long positions is denoted by $x^+$ with its component $x^+_i$ representing the long position in stock $i$.\n", "\n", "3. The *short* proportions of each stock in the portfolio. The corresponding vector of short positions is denoted by $x^-$ with its component $x^-_i$ representing the short position in stock $i$.\n", "\n", "### Variable Bounds\n", "\n", "Each position must be between $-s_i$ and $\\ell_i$:\n", "\n", "$$-s_i\\leq x_i\\leq \\ell_i \\; , \\; i \\in S$$\n", "\n", "The long and short proportions must be non-negative:\n", "\n", "$$ x_i^+, x_i^- \\geq 0\\; , \\, i \\in S$$" ] }, { "cell_type": "code", "execution_count": 6, "id": "68fcfee5", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:05:04.100596Z", "iopub.status.busy": "2025-01-31T10:05:04.100396Z", "iopub.status.idle": "2025-01-31T10:05:04.106865Z", "shell.execute_reply": "2025-01-31T10:05:04.106277Z" } }, "outputs": [], "source": [ "%%capture\n", "# Create an empty optimization model\n", "m = gp.Model()\n", "\n", "# Add variables: x[i] denotes the proportion invested in stock i\n", "x = m.addMVar(len(mu), lb=-s, ub=l, name=\"x\")\n", "# Add variables: x_plus[i] denotes the long proportion of stock i\n", "x_plus = m.addMVar(len(mu), lb=0, name=\"x_plus\")\n", "# Add variables: x_minus[i] denotes the short proportion of stock i\n", "x_minus = m.addMVar(len(mu), lb=0, name=\"x_minus\")" ] }, { "cell_type": "markdown", "id": "94cf8d51", "metadata": {}, "source": [ "### Constraints\n", "\n", "The budget constraint ensures that all capital is invested:\n", "\\begin{equation*}\n", "\\sum_{i \\in S} x_i = 1\n", "\\end{equation*}\n", "\n", "The proportion of capital invested is the difference between the positive and the negative parts:\n", "\\begin{equation*}\n", "x_i = x^+_i - x^-_i \\; , \\; i \\in S \\tag{1}\n", "\\end{equation*}\n", "\n", "The estimated risk must not exceed a prespecified maximal admissible level of variance $\\bar\\sigma^2$:\n", "\\begin{equation*}\n", "x^\\top \\Sigma x \\leq \\bar\\sigma^2\n", "\\end{equation*}" ] }, { "cell_type": "code", "execution_count": 7, "id": "ab815b0b", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:05:04.108676Z", "iopub.status.busy": "2025-01-31T10:05:04.108498Z", "iopub.status.idle": "2025-01-31T10:05:04.284758Z", "shell.execute_reply": "2025-01-31T10:05:04.284187Z" } }, "outputs": [], "source": [ "%%capture\n", "# Budget constraint: all investments sum up to 1\n", "budget_constr = m.addConstr(x.sum() == 1, name=\"Budget_Constraint\")\n", "\n", "# Position rebalancing constraint, see formula (1) above\n", "m.addConstr(x == x_plus - x_minus, name=\"Position_Balance\")\n", "\n", "# Upper bound on variance\n", "risk_constr = m.addConstr(x @ Sigma.to_numpy() @ x <= V, name=\"Variance\")" ] }, { "cell_type": "markdown", "id": "07ead5d5", "metadata": {}, "source": [ "#### Limiting Total Leverage and Short-Selling\n", "\n", "We limit the total of the short positions:\n", "\n", "\\begin{equation*}\n", "\\sum_{i \\in S} x^-_i \\leq s_\\text{total}\\tag{2}\n", "\\end{equation*}\n", "\n", "Note that in the optimal solution of the optimization problem, at least one of the two variables $x^+_i$ or $x^-_i$ is necessarily equal to zero for each asset $i$; this follows from the convexity of the problem. Generally though, if additional discrete constraints were added to the model, this complementarity is no longer guaranteed and more modeling care has to be taken; see [the notebook on transaction costs](transaction_costs.ipynb) for more details" ] }, { "cell_type": "code", "execution_count": 8, "id": "b34c471b", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:05:04.287452Z", "iopub.status.busy": "2025-01-31T10:05:04.287143Z", "iopub.status.idle": "2025-01-31T10:05:04.292518Z", "shell.execute_reply": "2025-01-31T10:05:04.291980Z" } }, "outputs": [], "source": [ "%%capture\n", "# Max short; see formula (2) above\n", "short_constr = m.addConstr(x_minus.sum() <= s_total, name=\"Total_Short\")" ] }, { "cell_type": "markdown", "id": "b50089f7", "metadata": {}, "source": [ "### Objective Function\n", "The objective is to maximize the expected return of the portfolio:\n", "$$\\max_x \\mu^\\top x $$" ] }, { "cell_type": "code", "execution_count": 9, "id": "0c5204eb", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:05:04.295410Z", "iopub.status.busy": "2025-01-31T10:05:04.294664Z", "iopub.status.idle": "2025-01-31T10:05:04.299022Z", "shell.execute_reply": "2025-01-31T10:05:04.298503Z" } }, "outputs": [], "source": [ "m.setObjective(mu.to_numpy() @ x, gp.GRB.MAXIMIZE)" ] }, { "cell_type": "markdown", "id": "17328185", "metadata": {}, "source": [ "We now solve the optimization problem:" ] }, { "cell_type": "code", "execution_count": 10, "id": "92111249", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:05:04.301292Z", "iopub.status.busy": "2025-01-31T10:05:04.301085Z", "iopub.status.idle": "2025-01-31T10:05:04.724020Z", "shell.execute_reply": "2025-01-31T10:05:04.723320Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gurobi Optimizer version 11.0.3 build v11.0.3rc0 (linux64 - \"Ubuntu 24.04.1 LTS\")\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "CPU model: AMD EPYC 7763 64-Core Processor, instruction set [SSE2|AVX|AVX2]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Thread count: 1 physical cores, 2 logical processors, using up to 2 threads\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "WLS license 2443533 - registered to Gurobi GmbH\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Optimize a model with 464 rows, 1386 columns and 2310 nonzeros\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Model fingerprint: 0x5705a198\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Model has 1 quadratic constraint\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Coefficient statistics:\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Matrix range [1e+00, 1e+00]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " QMatrix range [3e-03, 1e+02]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Objective range [7e-02, 6e-01]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Bounds range [1e-01, 2e-01]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " RHS range [3e-01, 1e+00]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " QRHS range [4e+00, 4e+00]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Presolve removed 0 rows and 462 columns\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Presolve time: 0.04s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Presolved: 927 rows, 1387 columns, 109264 nonzeros\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Presolved model has 1 second-order cone constraint\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Ordering time: 0.01s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Barrier statistics:\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " AA' NZ : 2.153e+05\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Factor NZ : 2.423e+05 (roughly 3 MB of memory)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Factor Ops : 9.108e+07 (less than 1 second per iteration)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Threads : 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Objective Residual\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Iter Primal Dual Primal Dual Compl Time\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 0 1.09530770e+01 6.63152811e+01 4.62e+01 5.22e-01 6.75e-02 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 1 1.06683696e+00 1.01784355e+01 3.23e+00 2.60e-03 5.81e-03 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 2 3.13698670e-01 1.45958398e+00 1.72e-01 1.43e-04 5.68e-04 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 3 3.32627798e-01 8.43175671e-01 5.01e-02 5.74e-05 2.36e-04 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 4 3.33107237e-01 6.88708709e-01 1.04e-02 3.53e-05 1.56e-04 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 5 3.77330169e-01 5.62141009e-01 1.45e-05 1.80e-05 8.00e-05 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 6 4.10777104e-01 4.65400413e-01 8.00e-07 5.13e-06 2.36e-05 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 7 4.18189425e-01 4.32791130e-01 1.91e-12 1.46e-06 6.32e-06 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 8 4.20353188e-01 4.23676729e-01 1.61e-12 3.92e-07 1.44e-06 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 9 4.20528316e-01 4.20638414e-01 1.29e-12 7.80e-09 4.76e-08 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 10 4.20558431e-01 4.20559964e-01 3.25e-12 9.27e-11 6.63e-10 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 11 4.20558886e-01 4.20558929e-01 4.13e-10 4.79e-13 1.84e-11 0s\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Barrier solved model in 11 iterations and 0.41 seconds (0.75 work units)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Optimal objective 4.20558886e-01\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "m.optimize()" ] }, { "cell_type": "markdown", "id": "347c1555", "metadata": {}, "source": [ "Display basic solution data for all non-negligible positions; for clarity we've rounded all solution quantities to five digits." ] }, { "cell_type": "code", "execution_count": 11, "id": "3e83058a", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:05:04.726393Z", "iopub.status.busy": "2025-01-31T10:05:04.725807Z", "iopub.status.idle": "2025-01-31T10:05:04.744361Z", "shell.execute_reply": "2025-01-31T10:05:04.743695Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Expected return: 0.420559\n", "Variance: 4.000000\n", "Solution time: 0.41 seconds\n", "\n", "Total long: 1.299989\n", "Total short: 0.299994\n", "Number of positions: 37\n", " long: 27\n", " short: 10\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
xx_plusx_minus
LLY0.2000000.2000000.000000
PGR0.1516300.1516300.000000
NVDA0.1145390.1145390.000000
AVGO0.0940760.0940760.000000
KDP0.0872090.0872090.000000
CTAS0.0723730.0723730.000000
ORLY0.0683370.0683370.000000
ODFL0.0672420.0672420.000000
TMUS0.0605440.0605440.000000
UNH0.0486770.0486770.000000
NOC0.0373280.0373280.000000
DPZ0.0303100.0303100.000000
TSLA0.0282050.0282050.000000
NFLX0.0276220.0276220.000000
META0.0268060.0268060.000000
KR0.0246620.0246620.000000
TTWO0.0243890.0243890.000000
FICO0.0232860.0232860.000000
TDG0.0187060.0187060.000000
WST0.0172310.0172310.000000
MNST0.0163250.0163250.000000
DXCM0.0163080.0163080.000000
FANG0.0132300.0132300.000000
MSFT0.0111590.0111590.000000
ENPH0.0105810.0105810.000000
MOH0.0070550.0070550.000000
AXON0.0021590.0021590.000000
FCX-0.0003060.0000000.000306
MOS-0.0050420.0000000.005042
WY-0.0067480.0000000.006748
WYNN-0.0070730.0000000.007073
KMI-0.0150300.0000000.015030
PARA-0.0273890.0000000.027389
IVZ-0.0507550.0000000.050755
VTRS-0.0509030.0000000.050903
CCL-0.0569040.0000000.056904
TRMB-0.0798450.0000000.079845
\n", "
" ], "text/plain": [ " x x_plus x_minus\n", "LLY 0.200000 0.200000 0.000000\n", "PGR 0.151630 0.151630 0.000000\n", "NVDA 0.114539 0.114539 0.000000\n", "AVGO 0.094076 0.094076 0.000000\n", "KDP 0.087209 0.087209 0.000000\n", "CTAS 0.072373 0.072373 0.000000\n", "ORLY 0.068337 0.068337 0.000000\n", "ODFL 0.067242 0.067242 0.000000\n", "TMUS 0.060544 0.060544 0.000000\n", "UNH 0.048677 0.048677 0.000000\n", "NOC 0.037328 0.037328 0.000000\n", "DPZ 0.030310 0.030310 0.000000\n", "TSLA 0.028205 0.028205 0.000000\n", "NFLX 0.027622 0.027622 0.000000\n", "META 0.026806 0.026806 0.000000\n", "KR 0.024662 0.024662 0.000000\n", "TTWO 0.024389 0.024389 0.000000\n", "FICO 0.023286 0.023286 0.000000\n", "TDG 0.018706 0.018706 0.000000\n", "WST 0.017231 0.017231 0.000000\n", "MNST 0.016325 0.016325 0.000000\n", "DXCM 0.016308 0.016308 0.000000\n", "FANG 0.013230 0.013230 0.000000\n", "MSFT 0.011159 0.011159 0.000000\n", "ENPH 0.010581 0.010581 0.000000\n", "MOH 0.007055 0.007055 0.000000\n", "AXON 0.002159 0.002159 0.000000\n", "FCX -0.000306 0.000000 0.000306\n", "MOS -0.005042 0.000000 0.005042\n", "WY -0.006748 0.000000 0.006748\n", "WYNN -0.007073 0.000000 0.007073\n", "KMI -0.015030 0.000000 0.015030\n", "PARA -0.027389 0.000000 0.027389\n", "IVZ -0.050755 0.000000 0.050755\n", "VTRS -0.050903 0.000000 0.050903\n", "CCL -0.056904 0.000000 0.056904\n", "TRMB -0.079845 0.000000 0.079845" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "print(f\"Expected return: {m.ObjVal:.6f}\")\n", "print(f\"Variance: {x.X @ Sigma @ x.X:.6f}\")\n", "print(f\"Solution time: {m.Runtime:.2f} seconds\\n\")\n", "print(f\"Total long: {x.X[x.X>1e-5].sum():.6f}\")\n", "print(f\"Total short: {-x.X[x.X<-1e-5].sum():.6f}\")\n", "\n", "print(f\"Number of positions: {np.count_nonzero(x.X[abs(x.X)>1e-5])}\")\n", "print(f\" long: {np.count_nonzero(x.X[x.X>1e-5])}\")\n", "print(f\" short: {np.count_nonzero(x.X[x.X<-1e-5])}\")\n", "\n", "# Print all assets with a non-negligible position\n", "df = pd.DataFrame(\n", " index=mu.index,\n", " data={\n", " \"x\": x.X,\n", " \"x_plus\": x_plus.X,\n", " \"x_minus\": x_minus.X,\n", " },\n", ").round(6)\n", "df[(abs(df[\"x\"]) > 1e-5)].sort_values(\"x\", ascending=False)" ] }, { "cell_type": "markdown", "id": "2b32250a", "metadata": {}, "source": [ "## Comparison with the unconstrained portfolio without short-selling\n", "\n", "We can also compute the portfolio without leverage and short-selling and compare the resulting portfolios." ] }, { "cell_type": "code", "execution_count": 12, "id": "350b00ed", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:05:04.746296Z", "iopub.status.busy": "2025-01-31T10:05:04.746071Z", "iopub.status.idle": "2025-01-31T10:05:05.309728Z", "shell.execute_reply": "2025-01-31T10:05:05.309013Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHHCAYAAACyWSKnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoY5JREFUeJzs3XdcleX/+PHXAQQUBBwoigjIcM/MrYhiYGqpOFBJEFfmzJHRULPcmXuVrD7lFkdazsStZUmaouIegeYAHGzu3x/+uL+eDiDgYajv5+NxHnWu+7qv+7qPZ1xc431pFEVREEIIIYR4hRgUdQWEEEIIIfRNGjhCCCGEeOVIA0cIIYQQrxxp4AghhBDilSMNHCGEEEK8cqSBI4QQQohXjjRwhBBCCPHKkQaOEEIIIV450sARQgghxCtHGjh6otFomDJlSr7OdXBwwN/fX6/1eZ3I66dfjx49YtCgQdjY2KDRaBgzZkyezv/vZyE0NBSNRsPVq1f1Ws+CkJfPsUajYcSIEQVbIT3w9/fHwcGhQMq+evUqGo2G0NDQXOf9+uuvC6QuhW3KlCloNBru3r1b1FUpcJn3+qz/fu9GRESg0WiIiIgo3MrlQBo4z8j8ItZoNBw6dEjnuKIo2NnZodFo6Ny5cxHUsPgLDw9Ho9GwcuXKbPPs3r0bjUbDwoULC7Fm4lk///xztj/k06dPJzQ0lGHDhvG///2P9957r3ArV4wcOXKEKVOmEBcXV9RVeWnk9N4qStOnT2fz5s1FXY18e9nrXxSMiroCxZGpqSmrVq2iVatWWun79+/n5s2bmJiY6JyTmJiIkVH+Xs7z589jYPBqtDU7deqEpaUlq1atYtCgQVnmWbVqFYaGhvj4+Ojlmq/S61dYfv75Z5YsWZLlD9Gvv/5Ks2bNmDx5sl6u9d577+Hj45Pl56a4+e/n+MiRI3zxxRf4+/tjZWVVdBUrpuzt7UlMTKREiRJqWk7vraI0ffp0evToQdeuXYu6KvlS3Ovfpk0bEhMTMTY2LuqqqORXIQtvv/0269evJy0tTSt91apVvPHGG9jY2OicY2pqmu8GjomJidYXxMvMxMSEHj16sH//fv755x+d40lJSWzatIkOHTpQoUKFfF9HURQSExPVa74qr19Be/z48XPz3LlzR68/5oaGhpiamup0cRdHL/I5fh1pNBpMTU0xNDQs6qq8kp79nivuDAwMMDU1LVZ/bBafmhQjffr04d69e+zevVtNS0lJYcOGDfTt2zfLc/47dp85Znnx4kX1rz9LS0sGDBjAkydPtM7971hm5lDZoUOHGDVqFNbW1lhZWTF06FBSUlKIi4ujf//+lClThjJlyvDRRx/x7Kbw2Y2FZjVe7u/vj7m5OdevX6dz586Ym5tja2vLkiVLADh9+jTt2rXDzMwMe3t7Vq1a9dzXz9fXl4yMDNasWaNzbPv27cTHx9OvXz8AQkJCaNeuHRUqVMDExIRatWqxbNkynfMcHBzo3LkzO3fupHHjxpQsWZIVK1Zk+frdv3+f8ePHU7duXczNzbGwsKBjx4789ddfWmVmvk7r1q1j2rRpVKlSBVNTU9q3b8/Fixd16nD8+HHefvttypQpg5mZGfXq1WPBggVaec6dO0ePHj0oW7YspqamNG7cmK1btz73NXt2fsK8efOwt7enZMmSuLm58ffff+vk//XXX2ndujVmZmZYWVnx7rvvEhUVpZUn8z149uxZ+vbtS5kyZWjVqhX+/v7qv2/mkGzm+0Wj0XDlyhW2b9+upmfOnblz5w4DBw6kYsWKmJqaUr9+fcLCwp57b9nNwVm6dCm1a9fGxMSEypUrM3z4cJ2hoOjoaLy9vbGxscHU1JQqVarg4+NDfHx8ttdbuHAhhoaGWmXNnTsXjUbD2LFj1bT09HRKly7NxIkT1bRnP8dTpkxhwoQJADg6Ouq8Hpk2b95MnTp1MDExoXbt2uzYseO5r0lKSgqTJk3ijTfewNLSEjMzM1q3bs2+ffu08j37vvj2229xcnLCxMSEN998k99//12n3My6mJqaUqdOHTZt2vTcugCMHTuWcuXKaX2PjBw5Umco+fbt22g0GvUz+t/vlOzeW/+Vm3vJzXs8u/lF/50zotFoePz4MWFhYWqdnjdvb9GiRdSuXZtSpUpRpkwZGjdunOX3X1xc3HO/49PS0vjyyy/Ve3ZwcOCTTz4hOTlZK19233P5qX9sbCwDBgygSpUqmJiYUKlSJd59912d9+8vv/yivs6lS5emU6dOnDlzJseys5LV707btm2pU6cOZ8+exd3dnVKlSmFra8vs2bN1zr927RrvvPMOZmZmVKhQgQ8//JCdO3e+0Lwe+VMlCw4ODjRv3pzVq1fTsWNH4OmbID4+Hh8fnzzNHenVqxeOjo7MmDGDP//8k5UrV1KhQgVmzZr13HNHjhyJjY0NX3zxBceOHePbb7/FysqKI0eOULVqVaZPn87PP//MnDlzqFOnDv3798/X/aanp9OxY0fatGnD7Nmz+fHHHxkxYgRmZmZ8+umn9OvXj+7du7N8+XL69+9P8+bNcXR0zLa8Nm3aUKVKFVatWqX1gwJPe8FKlSqldrMuW7aM2rVr884772BkZMRPP/3EBx98QEZGBsOHD9c69/z58/Tp04ehQ4cyePBgqlevnuX1L1++zObNm+nZsyeOjo7cvn2bFStW4ObmxtmzZ6lcubJW/pkzZ2JgYMD48eOJj49n9uzZ9OvXj+PHj6t5du/eTefOnalUqRKjR4/GxsaGqKgotm3bxujRowE4c+YMLVu2xNbWlo8//hgzMzPWrVtH165d2bhxI926dXvuv8X333/Pw4cPGT58OElJSSxYsIB27dpx+vRpKlasCMCePXvo2LEj1apVY8qUKSQmJrJo0SJatmzJn3/+qfOF37NnT1xcXJg+fTqKotCwYUP++ecfdu/ezf/+9z81X82aNfnf//7Hhx9+SJUqVRg3bhwA1tbWJCYm0rZtWy5evMiIESNwdHRk/fr1+Pv7ExcXp74GuTVlyhS++OILPDw8GDZsGOfPn2fZsmX8/vvvHD58mBIlSpCSkoKnpyfJycnqZ+HWrVts27aNuLg4LC0tsyy7devWZGRkcOjQIXWu3MGDBzEwMODgwYNqvpMnT/Lo0SPatGmTZTndu3fnwoULrF69mnnz5lG+fHn19ch06NAhwsPD+eCDDyhdujQLFy7E29ub69evU65cuWzvPyEhgZUrV9KnTx8GDx7Mw4cPCQoKwtPTk99++40GDRpo5V+1ahUPHz5k6NChaDQaZs+eTffu3bl8+bLae7lr1y68vb2pVasWM2bM4N69e+oP3PO0bt2aefPmcebMGerUqaPzmo0aNUpNA7J9zYYOHZrleyuv95LX9/jz/O9//2PQoEE0adKEIUOGAODk5JRt/u+++45Ro0bRo0cPRo8eTVJSEqdOneL48eM6f+Tm5jt+0KBBhIWF0aNHD8aNG8fx48eZMWMGUVFROo3QrL7n8lp/AG9vb86cOcPIkSNxcHDgzp077N69m+vXr6uv3//+9z/8/Pzw9PRk1qxZPHnyhGXLltGqVStOnjypl8npDx48wMvLi+7du9OrVy82bNjAxIkTqVu3rvr7+vjxY9q1a0dMTIz6/bpq1SqdBn+eKUIVEhKiAMrvv/+uLF68WCldurTy5MkTRVEUpWfPnoq7u7uiKIpib2+vdOrUSetcQJk8ebL6fPLkyQqgBAQEaOXr1q2bUq5cOa00e3t7xc/PT6cenp6eSkZGhprevHlzRaPRKO+//76alpaWplSpUkVxc3NT0/bt26cAyr59+7Suc+XKFQVQQkJC1DQ/Pz8FUKZPn66mPXjwQClZsqSi0WiUNWvWqOnnzp3Tuc/sTJgwQQGU8+fPq2nx8fGKqamp0qdPHzUt8/V9lqenp1KtWjWtNHt7ewVQduzYoZP/v69fUlKSkp6ernPvJiYmytSpU9W0zNepZs2aSnJyspq+YMECBVBOnz6tKMrT19jR0VGxt7dXHjx4oFXus/8+7du3V+rWraskJSVpHW/RooXi4uKiU+//1g9QSpYsqdy8eVNNP378uAIoH374oZrWoEEDpUKFCsq9e/fUtL/++ksxMDBQ+vfvr6Zlvgeffb0zDR8+XMnu45/V+3v+/PkKoPzwww9qWkpKitK8eXPF3NxcSUhIUNP/+x7JfD9fuXJFURRFuXPnjmJsbKy89dZbWv9OixcvVgAlODhYURRFOXnypAIo69evz7Ke2UlPT1csLCyUjz76SFGUp/8G5cqVU3r27KkYGhoqDx8+VBRFUb755hvFwMBA69/0v3WfM2eOVt2fBSjGxsbKxYsX1bS//vpLAZRFixblWMe0tDSt95yiPP3cVaxYUes7I/N9Ua5cOeX+/ftq+pYtWxRA+emnn9S0Bg0aKJUqVVLi4uLUtF27dimAYm9vn2N97ty5owDK0qVLFUVRlLi4OMXAwEDp2bOnUrFiRTXfqFGjlLJly6rv+6y+U7J7b+X1XnLzHvfz88vy3jLf+88yMzPT+p7IybvvvqvUrl07xzy5/Y6PjIxUAGXQoEFa+caPH68Ayq+//qqm5fQ9l5f6P3jwQAGUOXPmZJvn4cOHipWVlTJ48GCt9NjYWMXS0lIrPavX87/fu1n97ri5uSmA8v3336tpycnJio2NjeLt7a2mzZ07VwGUzZs3q2mJiYlKjRo1svwtyy0ZospGr169SExMZNu2bTx8+JBt27ZlOzyVk/fff1/reevWrbl37x4JCQnPPXfgwIFa3axNmzZFURQGDhyophkaGtK4cWMuX76c57o969kJwVZWVlSvXh0zMzN69eqlplevXh0rK6tcXcvX1xdAq0t348aNJCUlqcNTACVLllT/Pz4+nrt37+Lm5sbly5d1hiEcHR3x9PR87rVNTEzUceD09HTu3buHubk51atX588//9TJP2DAAK2Jca1btwZQ7/PkyZNcuXKFMWPG6MxNyfz3uX//Pr/++iu9evXi4cOH3L17l7t373Lv3j08PT2Jjo7m1q1bz617165dsbW1VZ83adKEpk2b8vPPPwMQExNDZGQk/v7+lC1bVs1Xr149OnTooOZ71n/fg/nx888/Y2NjQ58+fdS0EiVKMGrUKB49esT+/ftzXdaePXtISUlhzJgxWuP1gwcPxsLCgu3btwOoPTQ7d+7U6fLPiYGBAS1atODAgQMAREVFce/ePT7++GMUReHo0aPA096IOnXqvNB8Iw8PD62/pOvVq4eFhcVzPyOGhobqey4jI4P79++TlpZG48aNs3yP9u7dmzJlyqjP//sezXxf+Pn5afVsdejQgVq1aj33PqytralRo4b6mh0+fBhDQ0MmTJjA7du3iY6OBp6+Zq1atXqh+VS5vZe8vMf1zcrKips3b2Y5dPZfz/uOz6zvf3uzM3tIM9/vmXL7PZeTkiVLYmxsTEREBA8ePMgyz+7du4mLi6NPnz7q99Xdu3cxNDSkadOmL9578v+Zm5urvwcAxsbGNGnSROszsmPHDmxtbXnnnXfUNFNTUwYPHvxC15YGTjasra3x8PBg1apVhIeHk56eTo8ePfJcTtWqVbWeZ36ws3vT5XRu5heXnZ2dTnpuysuOqampVrd7ZplVqlTR+SLL7bXq1atHnTp1WL16tZq2atUqypcvr/XhPXz4MB4eHuo4u7W1NZ988glAlg2c3MjIyGDevHm4uLhgYmJC+fLlsba25tSpU1nO3Xjev9GlS5cA1K77rFy8eBFFUfj888+xtrbWemSuRrpz585z6+7i4qKT5urqqo6bX7t2DSDL4bmaNWty9+5dnYnEuX3dcnLt2jVcXFx0JhDWrFlTq165LQt078HY2Jhq1aqpxx0dHRk7diwrV65U3zdLlizJcf5NptatW/PHH3+QmJjIwYMHqVSpEo0aNaJ+/frqMMuhQ4fUH9f8+u97B56+f3LzGQkLC6NevXqYmppSrlw5rK2t1Tlqz7vOf9+jma9ZVu+f7IZy/6t169bqa3Pw4EEaN25M48aNKVu2LAcPHiQhIYG//vpL769ZdveSl/e4vk2cOBFzc3OaNGmCi4sLw4cP5/Dhw1nmzc39GBgY4OzsrJXPxsYGKysrnc9OXj6vKSkpxMbGaj3S09MxMTFh1qxZ/PLLL1SsWFGdfhAbG6uem9lobdeunc531q5du3L1fZUbWf2O/Pczcu3aNZycnHTy/fc1yyuZg5ODvn37MnjwYGJjY+nYsWO+/tLLbnWB8sxkvryem1X6s+Vl99dVenr6C1/nv9fKia+vLx9//DEnTpygSpUq7Nu3j6FDh6qrVC5dukT79u2pUaMG33zzDXZ2dhgbG/Pzzz8zb948MjIytMp7trcnJ9OnT+fzzz8nICCAL7/8krJly2JgYMCYMWN0ytTHfQJquePHj8/2r68X/bDmV25ft+Jo7ty5+Pv7s2XLFnbt2sWoUaOYMWMGx44dy3FuSatWrUhNTeXo0aMcPHhQ/VHO/BE/d+4c//777wv/WOf3vfPDDz/g7+9P165dmTBhAhUqVMDQ0JAZM2aoDWp9XCcvWrVqxXfffcfly5fV10yj0dCqVSsOHjxI5cqVycjIKLLXLCt5/a7LrZo1a3L+/Hm2bdvGjh072LhxI0uXLmXSpEl88cUXWnlzez+57fXKy+f1yJEjuLu7a6VduXIFBwcHxowZQ5cuXdi8eTM7d+7k888/Z8aMGfz66680bNhQ/c763//+l+XKYH2tJiyM9252pIGTg27dujF06FCOHTvG2rVri7o6uZb5F8R/V6Tk5a9sfejTpw+BgYGsWrUKe3t70tPTtYanfvrpJ5KTk9m6davWX0Ev2jW6YcMG3N3dCQoK0kqPi4tTJ4rmReYQxN9//42Hh0eWeapVqwY8HbbJLk9uZP5V9awLFy6ok/3s7e2BpxMR/+vcuXOUL18eMzOz514nr0MM9vb2nDp1ioyMDK1enHPnzmnVK7dlwdN7yHzd4Olfo1euXNF5/erWrUvdunX57LPPOHLkCC1btmT58uV89dVX2V6jSZMmGBsbc/DgQQ4ePKiuhmrTpg3fffcde/fuVZ/npKCWtm/YsIFq1aqpgTEz5Tf2UOZrmtX7J6v3SlYyGy67d+/m999/5+OPPwaevkbLli2jcuXKmJmZ8cYbb+RYzou+Znl5j5cpUybLIIxZfdfltV5mZmb07t2b3r17k5KSQvfu3Zk2bRqBgYGYmprmuhx7e3syMjKIjo5Wezzh6Yq0uLi4XH92sqp//fr1tVb7AlqNFScnJ8aNG8e4ceOIjo6mQYMGzJ07lx9++EH9XqtQocILfWfpg729PWfPnkVRFK37zGo1a17IEFUOzM3NWbZsGVOmTKFLly5FXZ1cs7e3x9DQUB1Pz7R06dJCrUfVqlVp3bo1a9eu5YcffsDR0ZEWLVqoxzNb9s+25OPj4wkJCXmh6xoaGur8dbB+/fpczYHJSqNGjXB0dGT+/Pk6X6aZ16lQoQJt27ZlxYoVxMTE6JTx77//5upamzdv1qrnb7/9xvHjx9XVBpUqVaJBgwaEhYVp1eXvv/9m165dvP3227m6TuYPRG4j9L799tvExsZqNfTT0tJYtGgR5ubmuLm55aoceDpvxdjYmIULF2r9OwUFBREfH0+nTp2ApyuN/huLqm7duhgYGOgsr/0vU1NT3nzzTVavXs3169e1enASExNZuHAhTk5OVKpUKcdy8vo65VZW7/3jx4+r84Py6tn3xbNDXLt37+bs2bO5KsPR0RFbW1vmzZtHamoqLVu2BJ6+ZpcuXWLDhg00a9bsuX/Zv+hrlpf3uJOTE/Hx8Zw6dUpNi4mJyXJ5vJmZWa7rdO/ePa3nxsbG1KpVC0VRSE1NzdP9ZNZ3/vz5WunffPMNgPp+f56s6l+mTBk8PDy0Hqampjx58oSkpCStvE5OTpQuXVr97Hh6emJhYcH06dOzvKfcfmfpg6enJ7du3dIKqZGUlMR33333QuVKD85z+Pn5FXUV8szS0pKePXuyaNEiNBoNTk5ObNu2TW9jqnnh6+vLkCFD+Oeff/j000+1jr311lsYGxvTpUsXhg4dyqNHj/juu++oUKFClo2E3OrcuTNTp05lwIABtGjRgtOnT/Pjjz9q9RbkhYGBAcuWLaNLly40aNCAAQMGUKlSJc6dO8eZM2fYuXMnAEuWLKFVq1bUrVuXwYMHU61aNW7fvs3Ro0e5efOmThyerDg7O9OqVSuGDRtGcnIy8+fPp1y5cnz00Udqnjlz5tCxY0eaN2/OwIED1SW0lpaWuY4em/lX+KhRo/D09HxuZOkhQ4awYsUK/P39+eOPP3BwcGDDhg0cPnyY+fPnU7p06VxdF57ObwsMDOSLL77Ay8uLd955h/Pnz7N06VLefPNNdULir7/+yogRI+jZsyeurq6kpaXxv//9D0NDQ7y9vZ97ndatWzNz5kwsLS2pW7cu8LQhWr16dc6fP5+r/csyX6dPP/0UHx8fSpQoQZcuXXLVS5aTzp07Ex4eTrdu3ejUqRNXrlxh+fLl1KpVi0ePHuWrzBkzZtCpUydatWpFQEAA9+/fV2O55LbM1q1bs2bNGurWrav2BDdq1AgzMzMuXLiQq4UWeX1vZSW373EfHx8mTpxIt27dGDVqlLrM2dXVVWey9htvvMGePXv45ptvqFy5Mo6OjjRt2jTL67/11lvY2NjQsmVLKlasSFRUFIsXL6ZTp055eq/D014WPz8/vv32W+Li4nBzc+O3334jLCyMrl276gwxZScv9b9w4QLt27enV69e1KpVCyMjIzZt2sTt27fVfwsLCwuWLVvGe++9R6NGjfDx8cHa2prr16+zfft2WrZsyeLFi/N0r/k1dOhQFi9eTJ8+fRg9ejSVKlXixx9/VHvK8t0rmK+1V6+oZ5eJ5yQvy8T//fffLK/x7LLT7JaJ/7ce2ZXp5+enmJmZaaX9+++/ire3t1KqVCmlTJkyytChQ5W///47y2Xi/z1XUZ4u78tqmWRW956T+/fvKyYmJgqgnD17Vuf41q1blXr16immpqaKg4ODMmvWLCU4ODjL1yi762a1THzcuHFKpUqVlJIlSyotW7ZUjh49qri5uWW5nP6/y5CzWvqqKIpy6NAhpUOHDkrp0qUVMzMzpV69ejrLgS9duqT0799fsbGxUUqUKKHY2toqnTt3VjZs2JDj65R5zTlz5ihz585V7OzsFBMTE6V169bKX3/9pZN/z549SsuWLZWSJUsqFhYWSpcuXXRe3+zeL4rydJnyyJEjFWtra0Wj0WgtAc3utb59+7YyYMAApXz58oqxsbFSt25dnddIUZ6/TDzT4sWLlRo1aiglSpRQKlasqAwbNkxryfbly5eVgIAAxcnJSTE1NVXKli2ruLu7K3v27MnmVdS2fft2BVA6duyolT5o0CAFUIKCgp5bd0VRlC+//FKxtbVVDAwMtO4DUIYPH65Txn/fj1nJyMhQpk+frtjb2ysmJiZKw4YNlW3btukse372fZGbum7cuFGpWbOmYmJiotSqVUsJDw/Pdil1VpYsWaIAyrBhw7TSPTw8FEDZu3evVnpWn5Xs3lt5vZfcvMcV5elS+Dp16ijGxsZK9erVlR9++CHLZc3nzp1T2rRpo5QsWVIBcvw3WrFihdKmTRulXLlyiomJieLk5KRMmDBBiY+PV/Pk5Ts+NTVV+eKLLxRHR0elRIkSip2dnRIYGKgVUkJRcv6ey0v97969qwwfPlypUaOGYmZmplhaWipNmzZV1q1bp5N33759iqenp2JpaamYmpoqTk5Oir+/v3LixAmde/1vXXOzTDyr35Gs3pOXL19WOnXqpJQsWVKxtrZWxo0bp2zcuFEBlGPHjmV7rznRKEohzPQRQuTo6tWrODo6MmfOHMaPH1/U1RFCiCI3f/58PvzwQ27evKkVPiO3ZA6OEEIIIYrUf/fcSkpKYsWKFbi4uOSrcQMyB0cIIYQQRax79+5UrVqVBg0aEB8fzw8//MC5c+f48ccf812mNHCEEEIIUaQ8PT1ZuXIlP/74I+np6dSqVYs1a9bQu3fvfJcpc3CEEEII8cqROThCCCGEeOVIA0cIIYQQr5zXdg5ORkYG//zzD6VLly6wcOxCCCGE0C9FUXj48CGVK1fW2QD4Wa9tA+eff/7R2ZVbCCGEEC+HGzdu5LjpbpE3cPz9/YmLi2Pz5s06xzJ3RB0zZgzwNPx0gwYNWLlypVbI8IyMDFq1akXlypXZsGFDrq6bGW77xo0bWFhYvPB9CCGEEKLgJSQkYGdn99xtM4q8gZMXrq6uzJw5k5EjR+Lu7q5ulDd37lwuX76stVHX82QOS1lYWEgDRwghhHjJPG96yUvVwAEYOXIkmzdvZvDgwWzbto1z584xadIk1q5dS/ny5Yu6ekIAcLmavBeFEK+3apfvFun1X7oGjkajISQkhHr16vHdd98RFBSEj48P77zzTo7nJScnq9vEw9MuLiGEEEK8ml66Bg6Avb098+fPZ9CgQVSpUoVdu3Y995wZM2bwxRdfFELthIB6yTWLugpCCFGkHhXx9V/KBg7AgAED+Pzzzxk5cmSu5tAEBgYyduxY9XnmJKWcZGRkkJKS8sJ1FXlXokQJDA0Ni7oaQgghXlIvbQMHwMjICCOj3N2CiYkJJiYmuS47JSWFK1eukJGRkd/qiRdkZWWFjY2NxCkSQgiRZy91A6egKIpCTEwMhoaG2NnZ5RhISOifoig8efKEO3fuAKir5V4mj24dLOoqCCHEa61YNHDi4+OJjIzUSitXrhwAt27d0jlmb29PmTJlCqw+aWlpPHnyhMqVK1OqVKkCu47IXsmSJQG4c+cOFSpUkOEqIYQQeVIsGjgRERE0bNhQK23gwIEAfP3113z99ddax/73v//h6+tbYPVJT08HwNjYuMCuIZ4vs3GZmpoqDRwhhBB5UmhjL/7+/mg0GjQaDcbGxjg7OzN16lRWrlyJoihkZGTw7bff0qxZM0qXLs2aNWswMzNj1KhRREdHoygKiqIwefJk3nvvPTQaDTdu3GDu3LkMGTKE+/fv673OMvejaMnrL4QQIr8KdXKJl5cXMTExREdHM27cOKZMmcKcOXNQFIW+ffsyatQo3n77bXbt2sXZs2cJCgrC1NSUr776Squc2rVrExMTw/Xr1wkJCWHHjh0MGzasMG9FCCGEEMVYoQ5RmZiYYGNjA8CwYcPYtGkTW7duxdHRkTVr1rBlyxatgH1Vq1alWbNmKIqiXWkjI7UcW1tbevbsSUhISOHdiBDPIZGMhSg6RR1BVxQPRbo8qGTJkqSkpLB69WqqV6+ebTTinIYqrl69ys6dO587XyY5OZmEhAStR16Z27Yu1Ed+HDhwgC5dulC5cmU0Go3OJqZTpkyhRo0amJmZUaZMGTw8PDh+/LhWnvv379OvXz8sLCywsrJi4MCBPHqkG7Jp//79aiyhZcuWUa9ePXVvr+bNm/PLL79o5U9KSmL48OGUK1cOc3NzvL29uX37dr7uUwghhMhJkUwyVhSFvXv3snPnTkaOHMm2bduoXr26Vp4xY8awcuVK4Gk8lJs3b6rHTp8+jbm5Oenp6SQlJQHwzTff5HjN1yWS8ePHj6lfvz4BAQF0795d57irqyuLFy+mWrVqJCYmMm/ePN566y0uXryItbU1AP369SMmJobdu3eTmprKgAEDGDJkCKtWrdIqa8uWLXTp0gWAKlWqMHPmTFxcXFAUhbCwMN59911OnjxJ7dq1Afjwww/Zvn0769evx9LSkhEjRtC9e3cOHz5cwK9K4ZNIxkIUoXz+gZgdCfvwctIo/x3/KSD+/v788MMPmJqakpqaSkZGBn379mXp0qU0btwYV1dXtmzZoub/999/iY+PJzw8nOnTpxMXFwc87YFYt24dW7duJSkpiR9++IHIyEi2bduWY9C/rPaisrOzIz4+XicSclJSEleuXMHR0RFTU1M1Pb+9Kvn1oh8qjUbDpk2b6Nq1a7Z5EhISsLS0ZM+ePbRv356oqChq1arF77//TuPGjQHYsWMHb7/9Njdv3qRy5crquc7OzixevBgvL68syy5btixz5sxh4MCBxMfHY21tzapVq+jRowcA586do2bNmhw9epRmzZrpnJ/dv8PLoLDfK0KIgiMNnOIl83crq9/vZxXqEJW7uzuRkZFER0eTmJhIWFgYZmZmuLi4cP78ea281tbWODs7U6FCBZ1yMldh1alTh5kzZ2JoaPjc3hkTExN1+CTz8bpLSUnh22+/xdLSkvr16wNw9OhRrKys1MYNgIeHBwYGBlpDWWfOnOHOnTu0a9dOp9z09HTWrFnD48ePad68OQB//PEHqampeHh4qPlq1KhB1apVOXr0aEHdohBCiNdUoQ5RmZmZ4ezsrJPep08f+vbty5YtW3j33XfzXO5nn31Gu3btGDZsmFYPg8jatm3b8PHx4cmTJ1SqVIndu3dTvvzTSbGxsbE6jUojIyPKli1LbGysmrZlyxY8PT215j6dPn2a5s2bk5SUhLm5OZs2baJWrVpqucbGxlhZWWmVXbFiRa1yXxXyF58QQhStYrEHgY+PDz169MDHx4epU6dy/Phxrl69yv79+1m7du1zg7w1b96cevXqMX369EKq8cstsyftyJEjeHl50atXL3VbhNz674o3gOrVqxMZGcnx48cZNmwYfn5+nD17Vp9VF0IIIXKlWDRwNBoNa9euZf78+fz888+0b9+e6tWrExAQgJ2dHYcOHXpuGR9++CErV67kxo0bhVDjl1tmT1qzZs0ICgrCyMiIoKAgAGxsbHQaO2lpady/f19dmh8TE8PJkyfp1KmTVr7MocM33niDGTNmUL9+fRYsWKCWm5KSos6lynT79m21XCGEEEJf8t3AyYxMPHPmTK30zZs3o9Fo2LhxI4aGhty6dQuA0NBQrSXLLi4ujB07FoC2bdtiaGjI+++/z8mTJ7G0tOStt95izpw5fPvtt9Ss+X8rUqZMmUJkZCQ1atTAxMREHd7w8fEhKSlJXbYsci8jI0OdgN28eXPi4uL4448/1OO//vorGRkZNG3aFICffvqJFi1aULZs2VyX+8Ybb1CiRAn27t2rHj9//jzXr19X5+kIIYQQ+vJCPTimpqbMmjWLBw8e6Bx75513KFeuHGFhYTrHDhw4wMWLF9X9pgAGDx5MTEwMly5dYuPGjdSqVQsfHx+GDBmic/6hQ4dITEykR48eWZb/Onv06BGRkZHqBqVXrlwhMjKS69ev8/jxYz755BOOHTvGtWvX+OOPPwgICODWrVv07NkTgJo1a+Ll5cXgwYP57bffOHz4MCNGjMDHx0ed37R161ad4anAwEAOHDjA1atXOX36NIGBgURERNCvXz8ALC0tGThwIGPHjmXfvn388ccfDBgwgObNm2e5gkoIIYR4ES80ydjDw4OLFy8yY8YMZs+erXWsRIkSvPfee4SGhvLJJ59oHQsODqZp06ZqfBR4urFi5lBFlSpVaNasGTVq1CAgIIBevXpprb4JCgqib9++uLm5MXr0aCZOnPgit/FKOXHiBO7u7urzzF4yPz8/li9fzrlz5wgLC+Pu3buUK1eON998k4MHD2r9W/z444+MGDGC9u3bY2BggLe3NwsXLgSextnZu3cv8+fP17runTt36N+/PzExMVhaWlKvXj127txJhw4d1Dzz5s1Ty0tOTsbT05OlS5cW4KtRdCSSsSjOJNKveB3kOw6Ov78/cXFx+Pn50bdvX6Kjo6lSpQqbN2+mW7duKIrC2bNnqV27Nvv376dNmzbA0x4GGxsb5s2bx+DBg4GnQ1QNGjTQ+dHMyMigfPny+Pj4qD+EDx8+pFKlShw/fpwaNWpga2vL+vXrad0657gj+oiDIyA8PJzPPvusUCYPv8z/DtLAEcWZNHDEyyy3cXBeeJl4t27daNCgAZMnT1YnqmaqVasWzZo1Izg4WG3grFu3DkVR8PHxeW7ZBgYGuLq6cvXqVTVtzZo1uLi4qD0OPj4+BAUFPbeB87pEMi5o5ubmzJo1q6irUexJJGNRrL1gIEoJgyBeBnpZRTVr1izCwsKIiorSORYQEMCGDRt4+PAh8HR4qmfPnpQuXTpXZSuKorUXVXBwML6+vupzX19f1q9fr5afncDAQOLj49WHrLbKn7feekvdnkEIIYQorvTSwGnTpg2enp4EBgbqHMvsqVm3bh3R0dEcPnxYa3JxTtLT04mOjsbR0RGAs2fPcuzYMT766COMjIwwMjKiWbNmPHnyhDVr1uRYlkQyFkIIIV4feotkPHPmTBo0aKCzaWbp0qXp2bMnwcHBXLp0CVdX1+cOJ2UKCwvjwYMHeHt7A08nF7dp04YlS5Zo5QsJCSEoKEid0yNEUZMufCGEKFp6a+DUrVuXfv36qattnjVw4EBat25NVFRUtiuenjx5QmxsLGlpady8eZNNmzYxb948hg0bhru7O6mpqfzvf/9j6tSp1KlTR+vcQYMG8c0333DmzBmt1UBCCCGEeD3pNZLx1KlTycjI0Elv1aoV1atXJyEhgf79+2d57nfffUelSpVwcnKie/funD17lrVr16qrp7Zu3cq9e/fo1q2bzrk1a9akZs2aOpOchRBCCPF6yncDJzMy8dGjRzE0NKRTp044ODhw/fp1jIyMdObEnDt3jrS0ND777DMaNWqkpickJNC6dWtq1aqFqakp5ubm2Nra0rp1a9q2bavm8/b25tSpU4wcORJra2tMTExwdXVl0qRJPHnyhLNnz/LNN9/k93aEEEII8Qp54R6coKAgRo4cyYEDB/jnn3+oWLEinTp1Ijg4WCfv48ePWbdunTrJ+P79+zRr1oyQkBDGjx/P8ePH+fPPP5k2bRonT55k1apV6rnHjh2jadOmpKSksH37di5cuMC0adMIDQ2lQ4cOpKSkvOitCCGEEOIV8UJzcB49esTatWs5ceIEsbGxatTigQMH0rVrV65fv07VqlXV/OvXryctLU0N3//JJ59w/fp1Lly4oG4DAGBvb89bb71FZgxCRVEYOHAgNWvWJDw8HAMDAzWfq6srDRs2ZN68eRLRWBQbEuiv+JHgdkK8Xl6oB2fdunXUqFGD6tWr4+vrS3BwMIqi8Pbbb1OxYkVCQ0O18oeEhNC9e3esrKzIyMhg7dq1+Pr6ajVunpUZ/yYyMpKzZ88yduxYtXGTqX79+nh4eLB69eoc65qcnExCQoLWQwghhBCvphfqwQkKClKD7nl5eREfH8/+/ftp27Ytfn5+hIaG8vnnn6PRaLh06RIHDx5k9+7dAPz777/ExcXpLCt/4403OH/+PABdunRh9erVXLhwAUBrV/Fn1axZk0OHDuVYV31EMi7sv8rz8xfngQMHmDNnDn/88QcxMTFs2rSJrl27qscVRWHy5Ml89913xMXF0bJlS5YtW4aLi4ua5/79+4wcOZKffvpJ3TtqwYIFmJuba11r//79+Pr6qkETlyxZwpw5c4iNjaV+/fosWrSIJk2a5O/mX3ISybgYesHovcWFhCAQInfy3YNz/vx5fvvtN/r06QOAkZERvXv3VlcyBQQEcOXKFfbt2wc87b1xcHCgXbt2OZa7adMmIiMj8fT0JDExUetYPrfNAl6fSMaPHz+mfv36OrGCMs2ePZuFCxeyfPlyjh8/jpmZGZ6eniQlJal5+vXrx5kzZ9i9ezfbtm3jwIEDWe7qvmXLFjWq8dq1axk7diyTJ0/mzz//pH79+nh6enLnzp2CuVEhhBAiB/lu4AQFBZGWlkblypXVqMLLli1j48aNxMfH4+LiQuvWrQkJCSEjI4Pvv/+eAQMGqMNO1tbWWFlZqb01mapWrYqzs7PWVg6urq4AWW4FkZmemSc7r0sk444dO/LVV19luZxeURTmz5/PZ599xrvvvku9evX4/vvv+eeff9i8eTPw9LXcsWMHK1eupGnTprRq1YpFixaxZs0a/vnnH63ytm7dyjvvvAPAN998w+DBgxkwYAC1atVi+fLllCpVKsvJ5kIIIURBy9cQVVpaGt9//z1z587lrbfe0jrWtWtXVq9ezfvvv8/AgQMZNmwY77zzDrdu3cLf31/NZ2BgQK9evfjhhx+YNGlStvNwABo0aECNGjWYN28ePj4+WvNw/vrrL/bs2cOMGTPycyuvlStXrhAbG4uHh4eaZmlpSdOmTTl69Cg+Pj4cPXoUKysrGjdurObx8PDAwMCA48ePqw2nM2fOcOfOHdq1a0dKSgp//PGH1lYdBgYGeHh4cPTo0cK7wWJEhhGEEKJo5asHZ9u2bTx48ICBAwdSp04drYe3t7c6TNWzZ09KlCjB0KFDeeutt7Czs9MqZ/r06dja2tKkSROCg4M5deoUly5dYtOmTWp8HXg62TgoKIizZ8/i7e3Nb7/9xvXr11m/fj1dunShefPmjBkz5sVeiddAbGwsABUrVtRKr1ixonosNjaWChUqaB03MjKibNmyah54Ojzl6emJsbExd+/eJT09PcdyhRBCiMKUrwZOUFAQHh4eWFpa6hzz9vbmxIkTnDp1ilKlSuHj48ODBw8ICAjQyVuuXDl+++03+vfvz5w5c2jSpAl169ZlypQp9O7dm++++07N26JFC44dO4ahoSEdO3bE2dmZwMBA/Pz82L17NyYmJvm5FZFPW7ZsUYenhBBCiOImXw2cn376ie3bt2d5rEmTJiiKQr169QBYsWIFiqKwfft2rdU8ABs2bKBixYqUK1eOpk2bkpycTGJiImfPnmXFihX07t2b4OBgdfuHunXrsmHDBkqXLk1qaiqXLl3im2++oVWrVqxfvz4/t/JasbGxAeD27dta6bdv31aP2djY6EwMTktL4/79+2qemJgYTp48SadOnQAoX748hoaGOZYrhBBCFCa97kWVFytXrqRfv34sW7aMcePGAU+XmsfExHD16lV++eUX3N3dGT16NJ07dyYtLU3r/KlTp6o/tG+++Sa9e/fmyJEjRXErLw1HR0dsbGzYu3evmpaQkMDx48dp3rw5AM2bNycuLo4//vhDzfPrr7+SkZFB06ZNgacN3BYtWlC2bFkAjI2NeeONN7TKzcjIYO/evWq5QgghRGHS227ieTF79mwmT57MmjVrtFb7mJiYqH/x29ra0qhRI5o1a0b79u0JDQ1l0KBBat7SpUtjY2ODjY0NS5Ys4YcfflB/eF9njx494uLFi+rzK1euEBkZSdmyZalatSpjxozhq6++wsXFBUdHRz7//HMqV66s9q7VrFkTLy8vBg8ezPLly0lNTWXEiBH4+PioE8GfXT2VaezYsfj5+dG4cWOaNGnC/Pnzefz4MQMGDCi0ey9OJJJx0ZGIxUIIKIIGzsSJE1m6dCnbtm2jffv2z83frl076tevT3h4uFYD51lGRkaUKFEix/2okpOTSU5OVp+/qpGMT5w4gbu7u/p87NixAGrgxY8++ojHjx8zZMgQ4uLiaNWqFTt27MDU1FQ958cff2TEiBG0b99eDfS3cOFC4Gmcnb179zJ//nyt6/bu3Zt///2XSZMmERsbS4MGDdixY4fOxGMhhBCiMBRqA+eXX35hy5Yt7N2797kB/55Vo0YNTp06leWxlJQU5s6dS3x8fI5l6iOS8cvwl2Hbtm1zDIio0WiYOnUqU6dOzTZP2bJltTY6fdbOnTtxdHTE2dlZ59iIESMYMWJE3iv9CpJIxkXoJYxYLGEFhNC/Qp2DU69ePRwcHJg8eTKPHj3K9XmKoqgBAjNNnDgRc3NzSpUqxaxZs5g5c6Y66TUrr0sk44Jmbm7OrFmziroaQgghRI4KtQfH1taWDRs24O7ujpeXF7/88otWxOLsREVF4ejoqJU2YcIE/P39MTc3p2LFijoNoP8yMTGRpeR68N/AjkIIIURxVOhzcOzt7dm/f7/ayNmxY0eOjZxff/2V06dP8+GHH2qlly9fPsthEiGKAxlyEEKIolUky8Tt7OyIiIjgzp07eHp6qhN+k5OTiY2N5datW/z5559Mnz6dd999l86dO9O/f/+iqKoQQgghXkJFskwcoEqVKkRERODu7o6npyeVKlVix44dVKpUCSMjI8qUKUP9+vVZuHAhfn5+WvtPFZYX2b1cvDh5/YUQQuSX3lsNsbGxjBw5kmrVqmFiYoKdnR1dunThvffeY8uWLWg0GvVRpUoVoqOjOXbsGJs2bWLfvn0oisKVK1eIi4sjJiaGAQMG6DRuwsLC2Lp1K2XLlqVUqVK4uLjg5+eX4zLxvMjcA0tf5Yn8efLkCQAlSpQo4poIIYR42ei1B+fq1au0bNkSKysr5syZQ926dUlNTWXnzp0MHjyYmJgYNe/o0aNJSEggJCRETcuMjBsaGkqvXr04cOAAx48fVyPoApw9exYvLy9GjhzJwoULKVmyJNHR0WzcuJH09HS93IeRkRGlSpXi33//pUSJEkXSe/Q6UxSFJ0+ecOfOHaysrNQGpxBCCJFbGkWP4wBvv/02p06d4vz585iZmWkdi4uLw8rKSn3u7+9PXFwcmzdv1sqnKArOzs4sXbqUffv2cf/+fb799lv1+Pz581mwYAFXrlx5obomJCRgaWlJfHw8FhYWOsdTUlK4cuWKug+WKHxWVlbY2Ng8d4WcEEKI18fzfr8z6a0H5/79++zYsYNp06bpNG4ArcZNTvbt28eTJ0/w8PDA1taWFi1aMG/ePLVMGxsbYmJiOHDgAG3atMl1/fIaydjY2BgXFxcZpioiJUqUkJ4bIYQQ+aa3Bs7FixdRFIUaNWq8UDlBQUH4+PhgaGhInTp1qFatGuvXr8ff3x+Anj17snPnTtzc3LCxsVH3qurfv3+OLbn8RDI2MDDQ2sJAiNwyfwmj6YrsybJ/IV4+eptcoo+Rrri4OMLDw/H19VXTfH19CQoKUp8bGhoSEhLCzZs3mT17Nra2tkyfPp3atWtrzfH5L4lkLIQQQrw+9NbAcXFxQaPRcO7cuXyXsWrVKpKSkmjatClGRkYYGRkxceJEDh06xIULF7Ty2tra8t5777F48WLOnDlDUlISy5cvz7ZsExMTLCwstB5CCCGEeDXpbYiqbNmyeHp6smTJEkaNGvXcScZZCQoKYty4cepwVKYPPviA4OBgZs6cmeV5ZcqUoVKlSjx+/PhFbkEIvZEhDSGEKFp6Xf+8ZMkS0tPTadKkCRs3biQ6OpqoqCgWLlxI8+bNczw3MjKSP//8k0GDBlGnTh2tR58+fQgLCyMtLY0VK1YwbNgwdu3axaVLlzhz5gwTJ07kzJkzdOnSRZ+3I4QQQoiXlF4bONWqVePPP//E3d2dcePGUadOHTp06MDevXtZtmxZjucGBQVRq1atLCcpd+vWjTt37vDzzz/TpEkTHj16xPvvv0/t2rVxc3Pj2LFjbN68GTc3N33ejhBCCCFeUnqPYFepUiUmTpxIu3btKFeuHHfu3CEyMpJNmzZx7949Nd/Vq1fVyMampqbs3LkTX19frcnKV69eRaPREBsbS3p6Ou+88w5///034eHh7Nq1i6SkJO7evcv+/ft54403KFOmDIsXL9b3LQkhhBDiJaP3Bs7ly5dp3Lgx0dHRrF69mosXL7J8+XL27t1L8+bNuX//vpo3M7rx+fPnCQwMZNKkSTlOFAZ477338PT0xN/fXysI3+DBg3njjTcYPny4vm9JCCGEEC8ZvW+2OXz4cIyNjdm1axclS5YEoGrVqjRs2BAnJyc+/fRTdbiqVKlS2NjYADBgwAAWL17M7t27GTZsWI7XWLFiBbVr1+abb75h/PjxhIaGcvjwYU6fPi1Rb0WxcLla+aKuwiur2uW7RV0FIcRLQK89OPfv32fnzp188MEHauMmk42NDf369WPt2rU6MXMUReHgwYOcO3cOY2Pj517H2tqab7/9ls8//5zdu3fz4YcfsmDBAuzs7LI9Jzk5mYSEBK2HEEIIIV5Neu3BiY6ORlEUatasmeXxmjVr8uDBA/79918Ali5dysqVK0lJSSE1NRVTU1NGjRqVq2t17dqVXr164eXlRZcuXfDz88sxf34iGQuRX/WSs/4MCD0owCjRsrxfiFdHgWyTnduoxv369SMyMpLDhw/TsWNHPv30U1q0aJHr63z++edkZGTw2WefPTevRDIWQgghXh967cFxdnZGo9EQFRVFt27ddI5HRUVRpkwZrK2tAbC0tMTZ2RmAdevW4ezsTLNmzfDw8MjV9YyMjLT+mxMTExNMTExyeytCCCGEeInptYFTrlw5OnTowNKlS/nwww+15uHExsby448/0r9//ywnApubmzN69GjGjx/PyZMnZbKweKnJUIcQQhQtvQ9RLV68mOTkZDw9PTlw4AA3btxgx44ddOjQAVtbW6ZNm5btuUOHDuXChQts3LhRK/38+fNERkZqPVJTU/VddSGEEEK8IvS+TNzFxYUTJ04wefJkevXqxf3797GxsaFr165MnjyZsmXLZntu2bJl6d+/P1OmTKF79+5quo+Pj05emUMjhBBCiOzorYFz48YNJk+ezI4dO7h79y6VKlWid+/eTJo0iXLlygHQtm1b9u/fD4CxsTHR0dFcunSJAQMGqA2azEB/WQ1RtWzZkkOHDqnHN23alOsJzUIIIYR4fehliCo/0YsvXbrExo0bqVWrFj4+PgwZMkSn3JCQEGJiYtTH1q1b9VFdIYQQQrzi9NKDk9/oxVWqVKFZs2bUqFGDgIAAevXqpbWCysrKSs0rxMvkZYtkLNGBhRCvmhfuwclv9OJn+fn5UaZMGcLDw1+0OtmSSMZCCCHE6+OFe3DyGr04KwYGBri6unL16lWt9D59+mBoaKg+/+GHH+jatWu+6imRjEVheukiGRdgdOCXgSzrF+LVo7dJxi862VdRFJ2JxfPmzdMasqpUqVK+yw8MDGTs2LHq84SEhBz3rhJCCCHEy+uFGzh5jV6clfT0dKKjo3nzzTe10m1sbNRIxy9KIhkLIYQQr48XbuC8SPTiTGFhYTx48ABvb+8XrY4QxYIMeQghRNHSyxDV4sWLadGiBZ6ennz11Vc4Ojpy5swZJkyYoBO9+MmTJ8TGxpKWlsbNmzfZtGkT8+bNY9iwYbi7u+fpuleuXCEyMlIrzcXFBTMzM33clhBCCCFeUnpp4OQlevF3333Hd999h7GxMeXKleONN95g7dq1WQ5vPc+zc2oyHTx4kFatWr3Q/QghhBDi5ZbvZeIajUbr4eDgQFhYGLdv3yY1NZWAgADGjh1L+fLlMTQ05NatW0RERKAoCoqicPXqVe7cucO2bdto2LAhABEREWg0GuLi4lAURWvFlIODA/Pnz1efR0RE4O7uTpkyZShZsiTOzs7079+fJk2a5PvFEEIIIcSrId8NnGcjDM+fPx8LCwuttPHjx6t5bW1t+f7777XODwsLw9bWNl/XPnv2LF5eXjRu3JgDBw5w+vRpFi1ahLGxMenp6fm9JSGEEEK8IvI9RPVshGFLS0s0Go1O1OG7d59GR/Xz8yMkJITAwED1WEhICH5+fnz55Zd5vvauXbuwsbFh9uzZapqTkxNeXl55LkuIgvCyRTLWJ4mKLIQoDvSyF9XzvPPOOzx48EDdKPPQoUM8ePCALl265Ks8GxsbYmJiOHDgQK7PkUjGQgghxOtDb4H+clKiRAl8fX0JDg6mVatWBAcH4+vrS4kSJfJVXs+ePdm5cydubm7Y2NjQrFkz2rdvT//+/bGwsMjyHIlkLArTSxfJWJ+KSVRkWaovxOutUHpwAAICAli/fj2xsbGsX7+egICAfJdlaGhISEgIN2/eZPbs2dja2jJ9+nRq165NTExMlucEBgYSHx+vPm7cuJHv6wshhBCieCu0Bk7dunWpUaMGffr0oWbNmtSpU0cnT2bvS3x8vM6xuLg4LC0ttdJsbW157733WLx4MWfOnCEpKYnly5dneX0TExMsLCy0HkIIIYR4NRXKEFWmgIAAPvjgA5YtW5blcRcXFwwMDPjjjz+wt7dX0y9fvkx8fDyurq7Zll2mTBkqVarE48eP9V5vIfJKhkeEEKJoFWoDZ/DgwfTs2RMrK6ssj5cuXZpBgwYxbtw4jIyMqFu3Ljdu3GDixIk0a9aMFi1aALBixQoiIyPp1q0bTk5OJCUl8f3333PmzBkWLVpUiHckhBBCiOKoUBs4RkZGlC+f8/LZBQsWMHPmTCZOnMi1a9ewsbGhQ4cOTJs2Td3PqkmTJhw6dIj333+ff/75B3Nzc2rXrs3mzZtxc3MrjFsRQgghRDGmURRFKajC27ZtS4MGDbQiEAOEhoYyZswY4uLimDJlCl988QVDhw7Vmj8TGRlJw4YNuXLlCg4ODly9ehVHR0dOnjxJgwYNcnWdnCQkJGBpaUl8fLzMxxFCCCFeErn9/S60ScY5MTU1JSgoiOjo6KKuihBCCCFeAYU6RJWd6tWrU6FCBT799FPWrVtX1NUR4oW9KpGMJSqxEOJlVSwaOAAzZ87kzTff5MSJEzRu3Fjv5ScnJ5OcnKw+l0jGQgghxKur2DRwGjVqRK9evZg4cSJ79+7NNl+LFi0wMNAeWUtMTNSZl/NfEslYFKZXJpJxIUclluX1Qgh9KTYNHICvvvqKmjVrsmvXLipUqJBlnrVr11KzpvaPR79+/Z5bdmBgIGPHjlWfJyQkYGdn92IVFkIIIUSxVKANHAsLi1xHJYanO4IPHjyYjz/+mKCgoCzLtLOzw9nZWSutZMmSz62LiYkJJiYmuay5EEIIIV5mBdrAqV69Ort27dJJ//PPP7ONSjxp0iScnJxYs2ZNQVZNiAIlQy1CCFG0CnSZ+LBhw7hw4QKjRo3i1KlTnD9/nm+++YbVq1czbty4LM+pWLEiY8eOZeHChQVZNSGEEEK8wgq0gVOtWjUOHDjAuXPn8PDwoGnTpqxbt47169fj5eWV7Xnjx4/H3Ny8IKsmhBBCiFdYgTZw/P39adKkCe3atePOnTvExcVx7NgxAHXbhSlTpvDHH38wb9486tati6mpKfb29jRu3JhDhw7h4OAAgIODA4qiUKtWLWbPnk39+vUpVaoU5cuXJzU1lfr165OamlqQtyOEEEKIl0SBRzI2NTVl1qxZPHjwIMvjiqLg4+PD1KlTGT16NFFRUURERGBnZ0fbtm3ZvHmzmjclJQVPT09mzpzJkCFDOHLkCL/99hvDhw9n0aJFnDlzpqBvRwghhBAvgQJfJu7h4cHFixeZMWMGs2fP1jm+bt06NmzYwNatW+nSpYua/u2333Lv3j0GDRpEhw4dMDMzY/78+Rw4cIATJ07QsGFDNW+1atXo2bMnKSkpBX07QuTKqxLJuLiRyMpCiNwq8B4cQ0NDpk+fzqJFi7h586bO8VWrVuHq6qrVuMk0btw47t27x+7duwH48ccf8fDw0GrcZCpRogRmZmbZ1iM5OZmEhASthxBCCCFeTYUS6K9bt240aNCAyZMn68S3uXDhgk7gvkyZ6RcuXAAgOjqatm3b5qsOEslYFKZXJpJxLsmyeCFEcVNou4nPmjWLsLAwoqKidI4pipKrMnKbLyuBgYHEx8erjxs3buS7LCGEEEIUb4XWwGnTpg2enp4EBgZqpbu6umbZ6AHU9MyggK6urpw7dy5f1zcxMcHCwkLrIYQQQohXU6HuRTVz5kwaNGhA9erV1TQfHx/69u3LTz/9pDMPZ+7cuZQrV44OHToA0LdvXz755BNOnjypMw8nNTWVlJSUHOfhCFFYZMhGCCGKVqH14ADUrVuXfv36aUUp9vHxoVu3bvj5+REUFMTVq1c5deoUQ4cOZevWraxcuVJttIwZM4aWLVvSvn17lixZwl9//cXly5dZt24dzZo1Izo6ujBvRwghhBDFlEZ5kYktz+Hv709cXJxWLJurV69SvXp1UlJS1Dk1aWlpzJ8/n9DQUKKjozE1NaV58+Z8/vnntGzZUqvM5ORk5s2bx6pVq4iOjqZUqVLUrFmTwYMH069fP4yMctcplZCQgKWlJfHx8TJcJYQQQrwkcvv7XaANnGf5+/sTFhYGgJGREWXLlqVevXr06dMHf39/DAyediY5ODhw7do1AEqVKkX16tUJDAykZ8+eXL16FUdHx2yv4eDgwJUrV3JVH2ngCCGEEC+f3P5+F+oQlZeXFzExMVy9epVffvkFd3d3Ro8eTefOnUlLS1PzTZ06lZiYGE6ePMmbb75J7969OXLkCHZ2dsTExOg8fvrpJwwNDRk+fHhh3o4QQgghiqlCnWRsYmKCjY0NALa2tjRq1IhmzZrRvn17QkNDGTRoEAClS5fGxsYGGxsblixZwg8//MBPP/1EixYt1PMz3b59m2HDhtGnTx/Gjx9fmLcjRLZepUjGEj1YCPEyKtQenKy0a9eO+vXrEx4enuVxIyMjSpQokeU2DKmpqXh7e2NjY8N3332X43UkkrEQQgjx+ijUHpzs1KhRg1OnTumkp6SkMHfuXOLj42nXrp3O8REjRnDp0iV+//13TE1Nc7yGRDIWhelViGQsS92FEC+zIu/BgacRijUajfp84sSJmJubU6pUKWbNmsXMmTPp1KmT1jnLly8nNDSUjRs3UqVKledeQyIZCyGEEK+PYtGDExUVpbU6asKECfj7+2Nubk7FihW1Gj8Ahw4dYtSoUSxdupQWLVrk6homJiaYmJjotd5CZEd6P4QQomgVeQ/Or7/+yunTp/H29lbTypcvj7OzMzY2NjqNmxs3buDt7c2QIUPUSclCCCGEEM8q1B6c5ORkYmNjSU9P5/bt2+zYsYMZM2bQuXNn+vfv/9zzk5KS6NatG7a2tnz88cfExsbq5PnvKishhBBCvH4KtYGzY8cOKlWqhJGREWXKlKF+/fosXLgQPz8/NdBfTo4fP84ff/wBgJ2dXZZ5CiluoRBCCCGKMb0NUWk0mhwfDg4OKIpCeHg4b7zxBsnJyRw7doyvv/6asWPHquVMmTKFKVOmZHkNNzc3FEVRH9WrV8fY2JiYmBg1TQghhBBCbz04MTEx6v+vXbuWSZMmcf78eTXN3NycvXv30rt3b6ZNm8Y777yDRqPh7Nmz7N69O8/XO3ToEImJifTo0YOwsDAmTpyol/sQQh8KK9CfBOETQois6a2B8+zcF0tLSzQajc58mJ9++omWLVsyYcIENc3V1ZWuXbvm+XpBQUH07dsXNzc3Ro8eLQ0cIYQQQqgKdRWVjY0NZ86c4e+//36hch4+fMj69evx9fWlQ4cOxMfHc/BgzstyJZKxEEII8foo1EnGI0eO5ODBg9StWxd7e3uaNWvGW2+9Rb9+/fIUo2bNmjW4uLhQu3ZtAHx8fAgKCqJ169bZniORjEVhKrRIxrbZv+fzSmL3CCFeJYXag2NmZsb27du5ePEin332Gebm5owbN44mTZrw5MmTXJcTHByMr6+v+tzX15f169fz8OHDbM+RSMZCCCHE66NIIhk7OTnh5OTEoEGD+PTTT3F1dWXt2rUMGDDgueeePXuWY8eO8dtvv2nNu0lPT2fNmjUMHjw4y/MkkrEoTNIbIoQQRavIIxk7ODhQqlQpHj9+nKv8QUFBtGnThr/++ovIyEj1MXbsWIKCggq4tkIIIYR4GRRqD86UKVN48uQJb7/9Nvb29sTFxbFw4UJSU1Pp0KGDmi89PZ3IyEitc01MTHB2duZ///sfU6dOpU6dOlrHBw0axDfffMOZM2fUuTlCCCGEeD0VagPHzc2NJUuW0L9/f27fvk2ZMmVo2LAhu3btonr16mq+R48e0bBhQ61znZycmDVrFvfu3aNbt246ZdesWZOaNWsSFBTEN998U+D3IoQQQojiS69DVP7+/mg0GmJjY4mLi1PTN2/ejEajwd3dnREjRnDjxg1SUlLU/ahat27NZ599BjwdsgJ48OCBVtTiixcv4u3tTY8ePejSpQvp6elq+ampqbzxxhs0bNhQGjdCCCGE0H8PjqmpKbNmzWLo0KGUKVMm23znz5/HwsJCfW5ubp6r8pcuXUrt2rWZOXMmn376KQBffvklMTEx7Nmz58UqL4SeFFYk4+eRSMdCiNeV3hs4Hh4eXLx4kRkzZjB79uxs81WoUAErK6s8l1+uXDm+/fZbevbsSZcuXUhJSWHGjBls2bIlxwaVEEIIIV4fem/gGBoaMn36dPr27cuoUaOoUqWKvi/BO++8g4+PD/379yc1NRU/Pz/efvvtHM9JTk4mOTlZfS6RjIUQQohXV4FMMu7WrRsNGjRg8uTJ2S7d/m/D59q1a5QrVy7X15g/fz62trZYWFjkat6NRDIWhanQIhk/Ty4jHUvcHiHEq6bA4uDMmjWLsLAwoqKisjx+8OBBrTg2eR1eWr16NRqNhrt373Lu3Lnn5pdIxkIIIcTro8CWibdp0wZPT08CAwPx9/fXOe7o6JivOTgAly9f5qOPPmLZsmXs27cPf39/Tp48mWOkYolkLAqT9IgIIUTRKtBIxjNnzuSnn37i6NGjeiszIyMDf39/2rdvT//+/Zk/fz4PHz5k0qRJeruGEEIIIV5uBRror27duvTr14+FCxfm+dzTp09TunRp9blGo6F+/fosWLCAM2fOcObMGQAsLS1ZuXIlnTt3xtvbmyZNmuit/kIIIYR4ORV4JOOpU6eydu3aPJ/Xpk0breeGhoacPXuWTz/9lJUrV2JjY6Me8/T0ZMCAAbkaqhJCCCHEq08vQ1SZEYxNTU3ZvHmz1rE5c+aQkpKCn58fAKGhoQCUKVMGjUajPry8vIiIiMDd3T3La6Snp1O9enV+/vln+vbty82bNzE2Nlb3pPr22285e/asNG6EEEIIob8eHDs7O9asWcO8efMoWbIkAElJSaxatYqqVatq5fXy8iIkJEQrzcTEBDMzM2JiYtS00aNHk5CQoJW3bNmywNOGUq9evThw4ADHjx+nadOm+roVIV6YPiMZSzRiIYTIO701cBo1asSlS5cIDw+nX79+AISHh1O1alUcHR218pqYmGgNMT3r2fSSJUuSnJysk1dRFEJCQli6dClVqlQhKChIGjhCCCGEUOl1FVVAQIBWb0twcDADBgzQ5yUA2LdvH0+ePMHDwwNfX1/WrFnD48ePczwnOTmZhIQErYcQQgghXk16nWTs6+tLYGAg165dA+Dw4cOsWbOGiIgIrXzbtm3T2Vzzk08+4ZNPPsnVdYKCgvDx8cHQ0JA6depQrVo11q9fn2W8nUwSyVgUJr1GMs5lNOL8kpg9QohXkV4bONbW1nTq1InQ0FAURaFTp06UL687F8Hd3Z1ly5ZppWXOrXmeuLg4wsPDOXTokJrm6+tLUFBQjg2cwMBAxo4dqz5PSEjAzs4uV9cUQgghxMtF78vEAwICGDFiBABLlizJMo+ZmRnOzs75Kn/VqlUkJSVpzblRFIWMjAwuXLiAq6trludJJGNRmKRXRAghipbeIxl7eXmRkpJCamoqnp6e+i6eoKAgxo0bp7WP1V9//UXr1q0JDg7W+/WEEEII8fLRew+OoaGhusGmoaFhlnmSk5OJjY3VroiRUZbDWc+KjIzkzz//5Mcff6RGjRpax/r06cPUqVP56quvMDIq8PiFQgghhCjGCmQvKgsLCywsLLI9vmPHDipVqqT1aNWq1XPLDQoKolatWjqNG4Bu3bpx584dfv755xequxBCCCFefhpFUZSirsSz/P39iYuL04qIvGHDBnx9fZk2bRqnT58mLCwMeNrrU6VKFXr27MnUqVMxNTXN9XUSEhKwtLQkPj4+x8aYEEIIIYqP3P5+F/uxnJUrVzJ8+HCWL1+u7jeVGQk5NTWVP/74Az8/PzQaDbNmzSrq6goB6DeScXEhEZWFEC+TAhmi0pfZs2czcuRI1qxZoxUwMDMSsp2dHV27dsXDw4Pdu3cXYU2FEEIIUZwU2x6ciRMnsnTpUrZt20b79u2zzff3339z5MgR7O3tcywvOTmZ5ORk9blEMhZCCCFeXcWygfPLL7+wZcsW9u7dS7t27XSOZ0ZCTktLIzk5GQMDAxYvXpxjmRLJWBQmvUYyLgASp0cI8aorlkNU9erVw8HBgcmTJ/Po0SOd4+7u7kRGRnL8+HH8/PwYMGAA3t7eOZYZGBhIfHy8+rhx40ZBVV8IIYQQRaxY9uDY2tqyYcMG3N3d8fLy4pdffqF06dLq8WcjIQcHB1O/fn2CgoIYOHBgtmVKJGNRmKSHRAghilax7MEBsLe3Z//+/cTGxuLl5cXDhw+zzGdgYMAnn3zCZ599RmJiYiHXUgghhBDFUbFt4ADY2dkRERHBnTt38PT0zHZicM+ePTE0NMx27yshhBBCvF6KdQMHoEqVKkRERHD37t1sGzlGRkaMGDGC2bNn8/jx4yKopRBCCCGKkzw3cDQaTY6Ptm3bPve4j48PXl5eWuXu2LEDjUaDg4ODVhTjKVOm0Lx5cy5cuMDRo0cJDw+nW7duvPnmm5QqVYrSpUvj5uZGnTp1uHPnDmZmZi/8ogghhBDi5ZbnScYxMTHq/69du5ZJkyZx/vx5NS0lJQVjY2MAbty4QZMmTdizZw+1a9cGwNjYmPXr1zN+/HjS0tLUjTH37dunDkk9a9++fbi7u6vPx48fz+LFi/nqq6/o2rUrqamp/PDDD7z77rssWLCAESNG5PWWhNC7VzGS8bMkqrEQorjLcwPHxsZG/X9LS0s0Go1W2rOSkpIAKFeunFYed3d3Hj16xIkTJ2jWrBkAERERfPzxx4wbN46kpCRMTU1JSkri+PHjahTjY8eOMXfuXBYuXMjIkSPV8qZNm0ZSUhJjx47l3Xffxc7OLq+3JYQQQohXSJHMwXF1daVy5crs27cPgIcPH/Lnn3/Ss2dPHBwcOHr0KABHjhwhOTlZ7cFZvXo15ubmDB06VKfMcePGkZqaysaNG7O8ZnJyMgkJCVoPIYQQQryaiiwOjru7OxEREQQGBnLw4EFcXV2xtramTZs2REREqMcdHR3VbRguXLiAk5OTOgT2rMqVK2NhYcGFCxeyvJ5EMhaFqThHMpYYPUKI10GRraJq27Ythw8fJjU1lYiICNq2bQuAm5ubOg8ns6HzLEVR8nU9iWQshBBCvD6KtAfn8ePH/P777+zbt48JEyYATxs4AQEB3L9/n+PHj2sNR7m6unLo0CGticyZ/vnnHxISEnB1dc3yehLJWBQm6SURQoiiVWQ9OE5OTtjZ2bF161YiIyNxc3MDnm7TYGtry9y5c0lJSdHqwfHx8eHRo0esWLFCp7yvv/6aEiVKPHdPKiGEEEK8+op0Lyp3d3eWLl2Ks7MzFStWVNPd3NxYtGiROhk5U/PmzRk9ejQTJkwgJSVFa5n4ggULmD9/vqygEkIIIUTRRjJ2d3fn4cOH6vybTG5ubjx8+FBn/g3A/PnzWbp0KatXr6ZOnTo0btyYAwcOsHnzZq2l40IIIYR4fb1QA8ff35+4uLhsjzk6OgLQsGFDNZLxxYsX8ff3p2vXrvj7+6MoCsuWLSM2NpaRI0dSrVo1hgwZQpUqVbh16xZ79+7VKvfIkSNs2LCBS5cuoSgKjo6OdO3albfffvtFbkUIIYQQr5ACHaLy8vIiJCREK83a2lon39WrV2nZsiVWVlbMmTOHunXrkpqays6dOxk+fDjnzp0DYNOmTfTq1YsBAwawb98+rKys2LNnDx999BFHjx5l3bp1aDSagrwlIYQQQrwECrSBY2Jikm2U42d98MEHaDQafvvtN629pGrXrk1AQAAAjx8/ZvDgwbzzzjt8++23ap5BgwZRsWJF3nnnHdatW0fv3r31fyNCCCGEeKkU+W7i9+/fZ8eOHQwfPjzLjTKtrKwA2LVrF/fu3WP8+PE6ebp06YKrqyurV6/O9joSyVgIIYR4fRRoD862bdswNzdXn3fs2JH169dr5bl48SKKolCjRo0cy8qMUFyzZtYRYmvUqJFtFGOQSMaicJnbti7qKuiQ2DxCiNdJgTZw3N3dWbZsmfo8qx6avEYmfpFIxmPHjlWfJyQkyJJyIYQQ4hVVoA0cMzMznJ2dc8zj4uKCRqNRJxJnJzNCcVRUFC1atNA5HhUVRa1atbI9XyIZi8IkvSVCCFG0inwOTtmyZfH09GTJkiU8fvxY53jmMvS33nqLsmXLMnfuXJ08W7duJTo6mj59+hR0dYUQQgjxEijyBg7AkiVLSE9Pp0mTJmzcuJHo6GiioqJYuHAhzZs3B572Bq1YsYItW7YwZMgQTp06xdWrVwkKCsLf358ePXrQq1evIr4TIYQQQhQHRbpVQ6Zq1arx559/Mm3aNMaNG0dMTAzW1ta88cYbWnN4evTowb59+5g2bRqtW7cmKSkJFxcXPv30U8aMGSMxcIQQQggBFGADJzQ0VI1enJ0pU6ZoRTwGMDc3x9nZmbZt2zJmzBhcXFy0zmnatCnt27fnzp07nD9/nhs3bvD999/z4MEDPvjgA629q4QQQgjxeirQIaqYmBj1MX/+fCwsLLTSno1ps2fPHmJiYvjrr7+YPn06UVFR1K9fX2urhuTkZDp06MD06dPx9/fnwIEDnD59moULF3L37l0WLVpUkLcjhBBCiJdEgQ5RPRvF2NLSEo1GoxPZ+O7duwCUK1dOPVatWjW6dOlC+/btGThwIJcuXcLQ0JB58+Zx6NAhTpw4QcOGDdUyqlatipubW76XkAshhBDi1VIsJhlnxcDAgNGjR3Pt2jX++OMPAFavXk2HDh20GjfPymk4TCIZCyGEEK+PYjHJODuZ0Y2vXr1KkyZNuHDhAm3bttXK061bN3bv3g1AvXr1OHLkSJZlSSRjUZiKKpKxxN8RQoinim0PDvxf1OKcemaWLl1KZGQkAQEBPHnyJNt8gYGBxMfHq48bN27ovb5CCCGEKB6KdQ9OVFQUgLrKysXFhfPnz2vlqVSpEvA0YGBOJJKxKEzSkyKEEEWr2PbgZGRksHDhQhwdHdU5N3369GH37t2cPHmyiGsnhBBCiOKs2PTg3Lt3j9jYWJ48ecLff//N/Pnz+e2339i+fTuGhoYAfPjhh2zfvp327dszefJkWrduTZkyZbhw4QK//PKLmk8IIYQQr7di08Dx8PAAoFSpUtjb2+Pu7s63336rtVmnqakpe/fuZf78+YSEhBAYGEhGRgaOjo507NiRDz/8sKiqL4QQQohiRKMUUPCY5cuXM2HCBB48eICR0dN21KNHjyhTpgwtW7YkIiJCzRsREYG7uzsXL17k0aNHfP755xw7doyEhARsbGxo2rQpixYtYunSpc9dCZXb20lISMDS0pL4+HgsLCzyfZ9CCCGEKDy5/f0usB4cd3d3Hj16xIkTJ2jWrBkABw8exMbGhuPHj5OUlISpqSkA+/bto2rVqlhYWNC0aVM6d+7Mzp07sbKy4urVq2zdupXHjx8zfvx43n//ffUab775JkOGDGHw4MEFdRtC5MvlauWLugr5Uu3y3aKughBC6EWBNXCqV69OpUqViIiIUBs4ERERvPvuu/z6668cO3ZMjWmT2YNz+PBh4uPjWblypdrr4+joiLu7u1quubm5+v+GhoaULl1aJzqyEEIIIV5vBbqKyt3dnX379qnP9+3bR9u2bXFzc1PTExMTOX78OO7u7tjY2JCWlsamTZv0vu2CRDIWQgghXh8FOsnY3d2dMWPGkJaWRmJiIidPnsTNzY3U1FSWL18OwNGjR0lOTsbd3Z2qVavyySef0LdvX95//32aNGlCu3bt6N+/PxUrVnyhukgkY1GY6iXXLNTrSdwdIYTQVqA9OG3btuXx48f8/vvvHDx4EFdXV6ytrXFzc1Pn4URERFCtWjWqVq0KwLRp04iNjWX58uXUrl2b5cuXU6NGDU6fPv1CdZFIxkIIIcTro0B7cJydnalSpQr79u3jwYMHuLm5AVC5cmXs7Ow4cuQI+/bto127dlrnlStXjp49e9KzZ0+mT59Ow4YN+frrrwkLC8t3XSSSsShM0qMihBBFq8AjGbu7uxMREUFERITWRplt2rThl19+4bffftOaRPxfxsbGODk58fjx44KuqhBCCCFeEQUe6M/d3Z3hw4eTmpqq9uAAuLm5MWLECFJSUtQGzrZt21izZg0+Pj64urqiKAo//fQTP//8MyEhIQVdVSGEEEK8IgqlgZOYmEiNGjW0Jgq7ubnx8OFDdTk5QK1atShVqhTjxo3jxo0bmJiY4OLiwsqVK3nvvfcKuqpCCCGEeEW80BCVv78/Go1GK/hepuHDh6PRaJgyZQqKotC0aVM0Gg0zZ84EwN7eHkVRmDlzJhqNBoBq1arx7bffMn78eFxcXEhNTeXChQssWLCAGTNmAODg4IBGo0Gj0XDt2jU+/PBD9blGo8Hf3/9FbkkIIYQQr4AXnoNjZ2fHmjVrSExMVNOSkpJYtWqVujIqk6mpKbNmzeLBgwfZlhccHMyYMWMYNWoUkZGRHD58mI8++ohHjx4B8PvvvxMTE0NMTAwbN24E4Pz582raggULXvSWhBBCCPGSe+EhqkaNGnHp0iXCw8Pp168fAOHh4VStWhVHR0etvB4eHly8eJEZM2Ywe/bsLMvbunUrvXr1YuDAgWpa7dq11f+3trZW/79s2bIAVKhQASsrqxe9FSGEEEK8IvSyiiogIEBrEnBwcDADBgzQyWdoaMj06dNZtGgRN2/ezLIsGxsbjh07xrVr1/RRNZVEMhZCCCFeH3qZZOzr60tgYKDaKDl8+DBr1qzR2jE8U7du3WjQoAGTJ08mKChI5/jkyZPp3r07Dg4OuLq60rx5c95++2169OiBgUH+22MSyVgUJnPb1oVyHYm3I4QQWdNLD461tTWdOnUiNDSUkJAQOnXqRPny2e+mPGvWLMLCwoiKitI5VqlSJY4ePcrp06cZPXo0aWlp+Pn54eXlRUZGRr7rKJGMhRBCiNeH3paJBwQEMGLECACWLFmSY942bdrg6elJYGBgtque6tSpQ506dfjggw94//33ad26Nfv3788xKGBOJJKxKEzSsyKEEEVLbw0cLy8vUlJS0Gg0eHp6Pjf/zJkzadCgAdWrV39u3lq1agFINGMhhBBC5IreGjiGhobqkJOhoeFz89etW5d+/fqxcOFCrfRhw4ZRuXJl2rVrR5UqVYiJieGrr77C2tqa5s2b66u6QgghhHiF6XUvKgsLCywsLHKdf+rUqTrzajw8PDh27Bg9e/bE1dUVb29vTE1N2bt3L+XKldNndYUQQgjxispXAyczgnFYWBjbt2+nYsWKdOjQgeDgYLXB8s8//7B//34aNWoEQGhoKJs3b+b48eOUKFGCXbt24eDgwMOHD5k1axb169enVKlSDB06lLi4OKZNm8ajR4+4desW5ubm1KtXTydictu2bfnggw8oU6aMRDAWQgghhCrfQ1ReXl6EhISQnp7O7du32bFjB6NHj2bDhg1s3bqVypUrs2jRIoYOHUrHjh1xcXEhMTERPz8/Bg0axFtvvUVKSgqenp789ddffPnll7Rs2RILCwuOHTvG119/TcOGDWnQoAHwfxGT582bR8mSJYHsIyYLUdQuV8t+FWFhqXb5blFXQQghiky+GzgmJibY2NgAYGtrS6NGjWjWrBnt27cnNDSUQYMG4evrS3h4OP7+/hw8eJDAwEBSU1OZM2cOAPPnz+fAgQOcOHGChg0bqmVXq1aNnj17kpKSoqblJWKyEEIIIV5vep2D065dO+rXr094eLiatnz5cqKjo+nXrx+LFy8mJCQEc3NzAH788Uc8PDy0GjeZSpQogZmZmVZabiMmZ0UiGQshhBCvD72tospUo0YNTp06pT6vUKECX375Je+//z7Dhg2jTZs26rHo6Gjatm2b67LzEjH5vySSsShM9ZJrFsp1JN6OEEJkTe8NHEVR0Gg06vP09HRCQ0MpVaoUx44dIy0tDSMjIzVvXjwbMVlRlOdGTH5WYGAgY8eOVZ8nJCRgZ2eXp+sLIYQQ4uWg9wZOVFSU1pyYr7/+msuXL3PixAnc3NyYPn06kyZNAsDV1ZVz587lqfy8REx+lkQyFoVJelaEEKJo6XUOzq+//srp06fx9vYG4MyZM0yePJlly5ZRs2ZNli1bxldffaUOYfXt25c9e/Zw8uRJnbJSU1OzjFycGTE5NTU1VxGThRBCCPH6yXcDJzk5mdjYWG7dusWff/7J9OnTeffdd+ncuTP9+/dXN8ns3r073bt3B8Db2xtvb2/8/f1JS0tjzJgxtGzZkvbt27NkyRL++usvLl++zLp162jWrBnR0dE6182MmHz27NlcRUwWQgghxOsn30NUO3bsoFKlShgZGVGmTBnq16/PwoUL8fPzw8DAgKlTp3Lr1i127dqldd6SJUuoXbu2OlS1e/du5s2bx4oVKxg/fjylSpWiZs2ajBo1ijp16mR57bxESxZCCCHEa0jRAz8/PwXQeURHRyuKoijTp09XDAwMlNmzZ+ucGxISogCKp6enVvqDBw8UQNm3b59W+q+//qp06tRJKV++vGJiYqJUq1ZN6dWrl7J///481Tk+Pl4BlPj4+LzdrBBCCCGKTG5/v/U2B8fLy4uYmBitR+Zk4+DgYD766COCg4OzPNfIyIg9e/awb9++HK+xdOlS2rdvT7ly5Vi7di3nz59n06ZNtGjRgg8//FBftyKEEEKIl5zeVlE9G9n4Wfv37ycxMZGpU6fy/fffc+TIEVq0aKGVx8zMjF69evHxxx9z/PjxLMu/fv06Y8aMYcyYMXzzzTdax+rVq8eoUaP0dStCCCGEeMnpdRVVVoKCgujTpw8lSpSgT58+BAUFZZlvypQpnD59mg0bNmR5fOPGjaSmpvLRRx9lefzZ2DtZkUjGQgghxOtDbz0427ZtU7dgAOjYsSNBQUFs2LCBo0ePAk8jEbdu3ZoFCxZo5QWoXLkyo0eP5tNPP6Vr16465V+4cAELCwutXqKNGzfi5+enPj969Ch169bNsn4SyVgUJnPb1novU2LrCCFE7umtB8fd3Z3IyEj1sXDhQlavXo2TkxP169cHoEGDBtjb27N27dosy5g4cSL//vtvtnN1/ttL4+npSWRkJNu3b+fx48ekp6dnW7/AwEDi4+PVx40bN/J5p0IIIYQo7vTWg2NmZoazs7NWWlBQEGfOnFG3ZgDIyMggODiYgQMH6pRhZWVFYGAgX3zxBZ07d9Y65uLiQnx8PLGxsWovjrm5Oc7OzlrlZ0ciGYvCJL0tQghRtApsDs7p06c5ceIEERERWj07ERERHD16NNstGkaOHImBgQELFizQSu/RowclSpRg1qxZBVVlIYQQQrwi9L4XVaagoCCaNGmitXt4pjfffJOgoCDmzJmjc8zU1JQvvviC4cOHa6VXrVqVuXPnMnr0aO7fv4+/vz+Ojo7cv3+fH374AUAiGwshhBACKKAenJSUFH744Qd1T6r/8vb25vvvvyc1NTXL435+flSrVk0nfeTIkezatYt///2XHj164OLiwttvv82VK1fYsWNHthOMhRBCCPF60VsDZ8uWLbz//vsAGBsbc/fuXSZMmMDw4cPRaDT4+/sD8O+//3LlyhVMTEwwNzfn448/pmnTphw+fFgty8nJibNnzwJPJy9rNBqqVKnClClT6NChA7/88gv3798nLS2N27dvs3nzZry8vJ67VFwIIYQQrwe9DVHZ2dmxZs0a5s2bR8mSJQFISkpi1apVVK1aVc3n7e1NSkoKYWFhVKtWjdu3b7N3717u3bunVd7UqVMZPHiw+tzQ0JCSJUuqjSh4OtQ1ZMgQrXxCFAeXq5XXe5nVLt/Ve5lCCPGq0lsDp1GjRly6dInw8HD69esHQHh4OFWrVlW3bIiLi+PgwYNERETg5uYGgL29PU2aNNEpr3Tp0llGRn42fo6hoWG2+YQQQgjx+tLrHJyAgABCQkLU58HBwQwYMEB9bm5ujrm5OZs3byY5OVmfl34uiWQshBBCvD70uorK19eXwMBArl27BsDhw4dZs2YNERERTy9mZERoaCiDBw9m+fLlNGrUCDc3N3x8fKhXr55WWRMnTuSzzz5Tn0+fPv2F9puSSMaiMNVLrqmXciSejhBC5I9ee3Csra3p1KkToaGhhISE0KlTJ8qX156L4O3tzT///MPWrVvx8vIiIiKCRo0aERoaqpVvwoQJWvFz+vfv/0J1k0jGQgghxOtD73FwAgICGDFiBABLlizJMo+pqSkdOnSgQ4cOfP755wwaNIjJkyerK60AypcvrxMZ+UVIJGNRmKTnRQghipbe4+B4eXmRkpJCamoqnp6euTqnVq1aPH78WN9VEUIIIcRrSu89OIaGhkRFRan//6x79+7Rs2dPAgICqFevHqVLl+bEiRPMnj2bd999V99VEUIIIcRrqkC2arCwsMgy3dzcnKZNmzJv3jwuXbpEamoqdnZ2DB48mE8++aQgqiKEEEKI15BGURTlRQrw9/cnLCxMJ93T05MdO3bg4ODAtWvXOHr0KM2aNVOPjxkzRt18E2DKlCnqKidDQ0OqVKlCt27d+PLLLzE3N+fq1as4Ojpy8uRJGjRooHWttm3b0qBBA+bPn5/reickJGBpaUl8fHy2DTIhhBBCFC+5/f3WSw+Ol5eXVvwbQGtCr6mpKRMnTmT//v05llO7dm327NlDWloahw8fJiAggCdPnrBixQp9VFOIQvOikYwlarEQQrwYvUwyNjExwcbGRutRpkwZ9fiQIUM4duwYP//8c47lGBkZYWNjQ5UqVejduzf9+vVj69at+qiiEEIIIV4jBbKb+H85Ojry/vvvExgYSEZGRq7PK1myJCkpKXqpg0QyFkIIIV4fehmi2rZtm9YeUQCffPKJ1sThzz77jJCQEH788Ufee++955b5xx9/sGrVKtq1a6eV3qJFCwwMtNtliYmJOvNy/ksiGYvC9MKRjG1bSywdIYR4AXpp4Li7u7Ns2TKttLJly2o9t7a2Zvz48UyaNInevXtnWc7p06cxNzcnPT2dlJQUOnXqxOLFi7XyrF27lpo1tX88Mjf3zElgYCBjx45VnyckJGBnZ/fc84QQQgjx8tFLA8fMzCxXUYfHjh3L0qVLWbp0aZbHq1evztatWzEyMqJy5coYGxvr5LGzs9O5VsmSJZ97bYlkLAqT9L4IIUTRKpQ5OJnMzc35/PPPmTZtGg8fPtQ5bmxsjLOzMw4ODlk2boQQQgghckMvDZzk5GRiY2O1HnfvZr3MdciQIVhaWrJq1Sp9XFoIIYQQQodeGjg7duygUqVKWo9WrVplmbdEiRJ8+eWXJCUl6ePSQgghhBA6XriBExoaiqIoWg8/Pz/Onz/P+++/z9WrVxkzZoyaf/jw4fTt2xc/Pz81ivGNGze4fv06d+7cwdjYGHt7e0aPHs29e/fU8xwcHHBzcyM0NFSnDv7+/lmmCyGEEOL1VCB7UcHTycBr1qxh3rx56iTgpKQkVq1aRdWqVdV8ly9fpnnz5ri6urJ69WocHR05c+YMEyZM4JdffuHYsWM6K7KEKO5yG8lYIhYLIUTBKLBJxo0aNcLOzo7w8HA1LTw8nKpVq9KwYUM1bfjw4RgbG7Nr1y7c3NyoWrUqHTt2ZM+ePdy6dYtPP/20oKoohBBCiFdUga6iCggI0NqjKjg4mAEDBqjP79+/z86dO/nggw90lnrb2NjQr18/1q5dywvuBwpIJGMhhBDidVJgQ1QAvr6+BAYGcu3aNQAOHz7MmjVr1Lk30dHRKIqiE7gvU82aNXnw4AH//vsvFSpUAGDp0qWsXLlSK19aWhqmpqY51kUiGYvClOtIxhKxWAghCkSBNnCsra3p1KmTOhG5U6dOlC+vOzchLz00/fr10xm2Cg8PZ/r06TmeJ5GMhRBCiNdHgTZw4Okw1YgRIwBYsmSJ1jFnZ2c0Gg1RUVF069ZN59yoqCjKlCmDtbW1mmZpaakTyTizdycnEslYFCbplRFCiKJV4JGMvby8SElJITU1FU9PT61j5cqVo0OHDixdupTExEStY7Gxsfz444/07t0bjUZT0NUUQgghxCukwBs4hoaGREVFcfbsWQwNDXWOL168mOTkZDw9PTlw4AA3btxgx44ddOjQAVtbW6ZNm1bQVRRCCCHEK6ZQ9qKysLDAwsIiy2MuLi6cOHGCatWq0atXL5ycnBgyZAju7u4cPXpUYuAIIYQQIs/00sA5evQohoaGdOrUCXga3Xjz5s38/PPPGBsb8+eff2rlb926Ndu2bSM2NhaA0qVLY2Vlpc6RSUtL49GjRzx+/FjrPAcHBxYsWMDMmTO10q2srIiPj9fHrQghhBDiFaCXBk5QUBAjR47kwIED/PPPP2r622+/Tf/+/enfvz/JyckAnD17ls8++4wlS5ZgY2PD/fv3adasGXv27GH58uVcvHiRNWvWcPHiRd58800uX76sdS1TU1NmzZrFgwcP9FF1IYQQQryCXriB8+jRI9auXcuwYcPUJeHPmjdvHo8ePWLy5MmkpaXh5+dHly5d6N27NwCffvop//zzD3v27KFjx45UrVqVNm3asHPnTkqUKMHw4cO1yvPw8MDGxoYZM2a8aNWFEEII8Yp64QbOunXrqFGjBtWrV8fX15fg4GCtuDalS5cmODiYuXPn0q9fP27cuMGyZcsAyMjIYM2aNfTr1w8bGxutckuWLMkHH3zAzp07uX//vppuaGjI9OnTWbRoETdv3sx1PSWSsRBCCPH6eOEGTlBQEL6+vsDTJeHx8fHs379fK0+7du3o0aMH69atY+HChZQrVw6Af//9l7i4uBwjGSuKwsWLF7XSu3XrRoMGDZg8eXKu6zljxgwsLS3VhwT5EwXJ3La1+hBCCFH4XqiBc/78eX777Tf69OkDgJGREb179yYoKEgr361bt9ixYwelSpXi4EHdAGj52Wtq1qxZhIWFERUVlav8gYGBxMfHq48bN27k+ZpCCCGEeDm8UCTjoKAg0tLSqFy5spqmKAomJiYsXrwYS0tLAAYPHswbb7zBp59+SocOHejRowdubm5YW1tjZWWVbSMlKioKjUajE7kYoE2bNnh6ehIYGIi/v/9z6yqRjEVhkkjGQghRtPLdg5OWlsb333/P3LlziYyMVB9//fUXlStXZvXq1QCsXLmSQ4cOERQUhLu7O8OGDSMgIIDHjx9jYGBAr169WLVqlbpkPFNiYiJLly7F09Mz21g4M2fO5KeffuLo0aP5vQ0hhBBCvILy3cDZtm0bDx48YODAgdSpU0fr4e3tTVBQENeuXWPs2LF8/fXX2NvbA0+HljQaDR9//DEA06dPx8bGhg4dOvDLL79w48YNDhw4gKenJ6mpqTr7Vz2rbt269OvXj4ULF+b3NoQQQgjxCsp3AycoKAgPDw91GOpZ3t7enDhxggEDBtC8eXOGDBmiHitVqhShoaEsW7aM/fv3U65cOY4dO4a7uztDhw7FyclJjWj8+++/U61atRzrMXXqVDIyMvJ7G0IIIYR4BWmU/MzwzSd/f3/CwsJ00qOjo3F2diY2NpZp06axfft2bt26RYUKFWjQoAFjxoyhffv2/PPPP9SuXZsvvviCUaNGqecfP36cVq1asX37dt56661c1SUhIQFLS0vi4+Oz3UZCCCGEEMVLbn+/X2iScX54eXkREhKilWZtbc3Vq1dp2bIlVlZWzJkzh7p165KamsrOnTsZPnw4586do3LlyixatIihQ4fSsWNHXFxcSExMxM/Pj0GDBuW6cSOEEEKIV1uhN3BMTEx0gvoBfPDBB2g0Gn777TfMzMzU9Nq1axMQEKA+9/X1JTw8HH9/fw4ePEhgYCCpqanMmTOnUOovhBBCiOKv0Bs4Wbl//z47duxg2rRpWo2bTFZWVlrPly9fTp06dejXrx/r16/n119/xdzcPMdrJCcnq/thARLJWAghhHiF6WWzzbzYtm0b5ubm6qNnz55cvHgRRVGoUaNGrsqoUKECX375JWvWrGHIkCG0adPmuedIJGNRWCR6sRBCFL1C78Fxd3dX96ICMDMz4/r163kqIz09ndDQUEqVKsWxY8dIS0vDyCjnWwkMDGTs2LHq84SEBGnkCCGEEK+oQm/gmJmZ6UQmNjExQaPRcO7cuVyV8fXXX3P58mVOnDiBm5sb06dPZ9KkSTmeI5GMRWGRKMZCCFH0Cn2IKitly5bF09OTJUuW8PjxY53jcXFx6v+fOXOGyZMns2zZMmrWrMmyZcv46quvOHXqVCHWWAghhBDFWbFo4AAsWbKE9PR0mjRpwsaNG4mOjiYqKoqFCxfSvHlz4On2EH5+fnTv3p3u3bsDT4MKent74+/vT1paWlHeghBCCCGKiWLTwKlWrRp//vkn7u7ujBs3jjp16tChQwf27t2rztmZPn06t27dYvHixVrnLlmyhJiYGKZPn14UVRdCCCFEMVOgDRx/f380Gg3vv/8+AKGhoWzevBmA4cOHo9FotHYCT0tL48mTJ6SkpKAoCoaGhjg4OFC3bl0AJk2aRExMDPHx8fTt25fKlStjampKvXr1aNKkCb169SrI2xFCCCHES6LAe3Ds7OxYs2YNiYmJalpSUhKrVq2iatWqatrly5dp3Lgx0dHRrF69mosXL7J8+XL27t1L8+bNuX//PgCpqal06NCB+Ph4wsPDOX/+PGvXrqVu3bpac3WEEEII8foq8FVUjRo14tKlS4SHh9OvXz8AwsPDqVq1Ko6Ojmq+4cOHY2xszK5duyhZsiQAVatWpWHDhjg5OfHpp5+ybNkyzpw5w6VLl9i7d6+6Q7m9vT0tW7Ys6FsRQgghxEuiUObgBAQEaO0/FRwczIABA9Tn9+/fZ+fOnXzwwQdq4yaTjY0N/fr1Y+3atSiKgrW1NQYGBmzYsIH09PRc1yE5OZmEhASthxBCCCFeTYXSwPH19eXQoUNcu3aNa9eucfjwYXx9fdXj0dHRKIpCzZo1szy/Zs2aPHjwgH///RdbW1sWLlzIpEmTKFOmDO3atePLL7/k8uXLOdZBIhkLfTK3bZ3jQwghRNEqlAaOtbU1nTp1IjQ0lJCQEDp16kT58uV18imKkqvyhg8fTmxsLD/++CPNmzdn/fr11K5dm927d2d7TmBgIPHx8erjxo0b+b4fIYQQQhRvhRbJOCAggBEjRgBPl3U/y9nZGY1GQ1RUFN26ddM5NyoqijJlymBtba2mlS5dmi5dutClSxe++uorPD09+eqrr+jQoUOW15dIxkKfJFqxEEIUb4UWB8fLy4uUlBRSU1Px9PTUOlauXDk6dOjA0qVLtVZbAWpPTe/evdFoNFmWrdFoqFGjRpZRkIUQQgjx+im0Bo6hoSFRUVGcPXsWQ0NDneOLFy8mOTkZT09PDhw4wI0bN9ixYwcdOnTA1taWadOmARAZGcm7777Lhg0bOHv2LBcvXiQoKIjg4GDefffdwrodIYQQQhRjhbrZpoWFRbbHXFxcOHHiBJMnT6ZXr17cv38fGxsbunbtyuTJkylbtiwAVapUwcHBgS+++IKrV6+i0WjU5x9++GFh3YoQQgghirEC7cF5NnJxVry8vNi4caO6h5S9vT2LFy/m3r17tGjRguvXr7Nw4ULKlStHREQEGo2GmjVrUrFiRU6fPs3Dhw9JSEjg1KlTHD9+nBYtWuRp6bgQQgghXk1FuheVu7s7jx494sSJE2rawYMHsbGx4fjx4yQlJanp+/bto2rVqgQFBfHFF19w+vRp9dj69evZtm0bYWFhWQ5/CSGEEOL1UqQNnOrVq1OpUiUiIiLUtIiICN59910cHR05duyYVrq7uzvvvPMOffv2xc/Pj9TUVP7991+GDx/OzJkzqV69ehHchRBCCCGKmyLfTdzd3Z19+/apz/ft20fbtm1xc3NT0xMTEzl+/Dju7u4ALFiwgHv37vHll1/ywQcfUKdOHUaOHJnjdSSSsRBCCPH6KNRJxllxd3dnzJgxpKWlkZiYyMmTJ3FzcyM1NZXly5cDcPToUZKTk9UGjoWFBSEhIbz11luYmZlx6tSpbJeQZ5oxYwZffPFFgd+PeHXlJUKxxMkRQoiiVeQ9OG3btuXx48f8/vvvHDx4EFdXV6ytrXFzc1Pn4URERFCtWjWt3cfbtWtHs2bNeO+999RNN3MikYyFEEKI10eR9+A4OztTpUoV9u3bx4MHD3BzcwOgcuXK2NnZceTIEfbt20e7du10zjUyMsLIKHe3IJGMxYuSXhkhhHh5FHkPDjwdpoqIiCAiIoK2bduq6W3atOGXX37ht99+U4enhBBCCCGep9g0cA4dOkRkZKTagwPg5ubGihUrSElJkQaOEEIIIXKt2DRwEhMTcXZ2pmLFimq6m5sbDx8+VJeTCyGEEELkRq4bOMuXL6d06dJq1GGAR48eUaJECa1hJUCNOmxtbc306dN1yurVqxfNmjUjPT2dKVOm4OjoyNChQ4mKilLzREZG4uDgwJUrVzh37py6LUOFChV4+PChep358+fToEEDpkyZksdbF0IIIcSrKtcNnIKMOmxqakpQUBDR0dHPrcfDhw/5+uuvc1ttIYQQQryGct3AKciow9WrV8fd3Z1PP/30ufUYOXIk33zzDXfu3Mlt1YUQQgjxmsnTHJyCjDo8c+ZMNm7cqNVDlJU+ffrg7OzM1KlT81J1iWQshBBCvEbyFAenIKMON2rUiF69ejFx4kT27t2bbR00Gg0zZ86kS5cufPjhhzg5OeWq7hLJWLyIvEQxBomZI4QQRS1PPTgFHXX4q6++4uDBg+zatSvHenh6etKqVSs+//zzXNddIhkLIYQQr4889eAUdNRhJycnBg8ezMcff0xQUFCOeWfOnEnz5s2ZMGFCruoukYzFi5AeGSGEeLnkOQ5OQUcdnjRpEhcuXGDNmjU55mvSpAndu3fn448/zve1hBBCCPFqyvNeVO7u7gwfPpzU1FSdqMMjRox44ajDFStWZOzYscyZM+e5eadNm0bt2rVzvR+VEEIIIV4P+erBedGow/7+/nTt2lUrbcOGDZiamjJ37lwuXryoFVfnWTNmzECj0eDv74+rqysBAQEkJSU9t8dHCCGEEK+PPHd9ODg4oCiKTrq9vX2W6ZmejZ/zrClTplClShX69evH8uXLGTBgAP7+/tjZ2ZGQkKA2ohwcHEhMTKRSpUpaE5hXrFhBcnIycXFxeb0VIYQQQryiinwvqtmzZzNy5EjWrFnDgAED1PRGjRphZ2dHeHi4mhYeHk7VqlVp2LBhUVRVCCGEEC+JIm3gTJw4kS+//JJt27bRrVs3neMBAQGEhISoz4ODg7UaQUIIIYQQWSmyBs4vv/zC7Nmz2bJlC+3bt88yj6+vL4cOHeLatWtcu3aNw4cP4+vrm6/rSSRjIYQQ4vVRZMuP6tWrx927d5k8eTJNmjTB3NxcJ4+1tTWdOnUiNDQURVHo1KkT5cuXz9f1JJKxeFZeIxPnlcTNEUKIolVkPTi2trZERERw69YtvLy8ePjwYZb5AgICCA0NJSwsjICAgHxfTyIZCyGEEK+PIg0gY29vz/79+3F3d8fLy4sdO3ZQunRprTxeXl6kpKSg0Wjw9PTM97UkkrF4lvSwCCHEq63IV1HZ2dkRERHBnTt38PT01JkbY2hoSFRUFGfPnsXQ0LCIaimEEEKIl0mRN3AAqlSpQkREBHfv3s2ykWNhYYGFhUUR1U4IIYQQLxu9DlH5+/sTFhYGQIkSJahatSr9+/fnk08+UbdT8PT0ZM+ePRw7dkzrXFtbW1q0aKGeb2RkhKOjIz179mTq1KmYmpqqeTdv3szNmzcxNjbG1dWVv//+W5+3IYQQQoiXnN57cLy8vIiJiSE6Oppx48YxZcoUdV+p69evc+TIEUaMGEFwcHCO51++fJl58+axYsUKJk+erJMvNDSUXr16kZCQwPHjx/V9G0IIIYR4iem9gWNiYoKNjQ329vYMGzYMDw8Ptm7dCkBISAidO3dm2LBhrF69msTExGzPt7Ozo2vXrnh4eLB7926tPIqiEBISwnvvvUffvn0JCgrS920IIYQQ4iVW4HNwSpYsSUpKitoo8fX1pUaNGjg7O7Nhw4Ycz/377785cuQIxsbGWun79u3jyZMneHh44Ovry5o1a3j8+HFB3oYQQgghXiIF1sBRFIU9e/awc+dO2rVrx549e3jy5Im61NvX1zfLnpdt27Zhbm6OqakpdevW5c6dO0yYMEErT1BQED4+PhgaGlKnTh2qVavG+vXrc6yPRDIWQgghXh96j4OT2UBJTU0lIyODvn37MmXKFAYNGkTv3r3VycZ9+vRhwoQJXLp0CScnJ/V8d3d3li1bxuPHj5k3bx5GRkZ4e3urx+Pi4ggPD+fQoUNqWmZjyd/fP9t6SSTjl1tBRx7WN4mzI4QQRUvvPTju7u5ERkYSHR1NYmIiYWFhJCcns2nTJpYuXYqRkRFGRkbY2tqSlpamM9nYzMwMZ2dn6tevT3BwMMePH9fq6Vm1ahVJSUk0bdpULWvixIkcOnSICxcuZFsviWQshBBCvD703oOT2UB51o8//kiVKlXYvHmzVvquXbuYO3cuU6dOzTKIn4GBAZ988gljx46lb9++lCxZkqCgIMaNG6fTW/PBBx8QHBzMzJkzs6yXRDJ+uUmPiBBCiLwolEB/QUFB9OjRgzp16mg9Bg4cyN27d9mxY0e25/bs2RNDQ0OWLFlCZGQkf/75J4MGDdIpq0+fPoSFhZGWllYYtySEEEKIYqzAGzh//PEHf/31l9Y8mkyWlpa0b98+x2XeRkZGjBgxgtmzZ7NkyRJq1apFjRo1dPJ169aNO3fu8PPPP+u1/kIIIYR4+WgURVGK6uL+/v7ExcWRnp5Oampqlj05Bw8epE2bNvz111+MGjWK/fv3Z1teREQEbm5uubp2QkIClpaWxMfHyzYQQgghxEsit7/fRbqbeKaBAwfi7e3NzZs3qVKlitaxkJAQGjduTL169QgPDyclJUXreEpKCp06dcLU1JSmTZsWZrWFEEIIUUwViwZO586dsba2JjQ0lM8++0xNf/ToEevXr1e3eihbtqzOuYMHD+bu3bv8/vvvWvtVCSGEEOL1VSx2EzcyMqJ///6Ehoby7IjZ+vXrSU9Pp0+fPlmet3TpUr7//ns2btyo0/MjhBBCiNdXsWjgAAQEBHDp0iWtOTYhISF4e3tjaWmpk//AgQOMGTOGJUuW0KJFi+eWL5GMhRBCiNdHsRiiAqhRowYtWrQgODiYtm3bcvHiRQ4ePMjUqVN18l6/fp0ePXowZMgQBg0alKvyJZJx7rxsEYOLK4nbI4QQRavY9ODA08nGGzdu5OHDh4SEhODk5KSzKioxMZFu3bpRu3Zt5s+fn+uyJZKxEEII8fooNj04AL169WL06NGsWrWK77//nmHDhqHRaLTyDBo0iPv377Nz5051X6vckEjGuSM9D0IIIV4FxaqBY25uTu/evQkMDCQhIUFnO4Y5c+awfv16fvrpJ9LS0oiNjdU6bmlpScmSJQuxxkIIIYQojorVEBU8HaZ68OABnp6eVK5cWevY0qVLSU1NxcvLi0qVKuk81q5dW0S1FkIIIURxopcGTpcuXfDy8sry2MGDB9FoNFk+wsLC2LJlizoM5e/vr66I2rVrF46Ojnz00UckJSUBcOXKFRRFISIiAnd3d8qUKUPJkiVxdnamf//+9O3bVx+3I4QQQoiXnF4aOAMHDmT37t3cvHlT51hISAgNGjQgJiZGfVSpUoWpU6dqpWXy8vIiJiaGy5cvM2/ePFasWMHkyZPV42fPnsXLy4vGjRtz4MABTp8+zaJFizA2NiY9PV0ftyOEEEKIl5xe5uDkJhKxjY2Nmm5oaEjp0qW10jKZmJio6XZ2dnh4eLB7925mzZoFPO3ZsbGxYfbs2eo5Tk5O2fYgCSGEEOL1o5cenPxGIn6ev//+myNHjmBsbKym2djYEBMTw4EDB1643kIIIYR4NeltknFeIxFnZ9u2bZibm2NqakrdunW5c+cOEyZMUI/37NmTPn364ObmRqVKlejWrRuLFy9+bmRiiWQshBBCvD40yrNdLi+oZcuWODk58f3333Px4kVcXFzYt28fbdu21crn4ODAmDFjGDNmjFa6v78/t27dYtmyZTx+/Jh58+ZhZGTEypUrda5169Ytfv31V44fP054eDiGhob89ttvVKpUKcu6TZkyJctIxs/bbv11I5GM9UPiCQkhRMFISEjA0tLyub/fel0mnptIxM9jZmaGs7Mz9evXJzg4mOPHjxMUFKSTz9bWlvfee4/Fixdz5swZkpKSWL58ebblSiRjIYQQ4vWh10B/uYlEnBcGBgZ88sknjB07lr59+2YbxK9MmTJUqlSJx48fZ1uWRDLOHel5EEII8SrQaw/Os5GIY2JidCIR50fPnj0xNDRkyZL/1969R9WYr3EA/+4uO7rupFSkULlESlbJZUINOS5x3IZQ7pLVYRTjzIhjzAgzozOYODNLmeOSjOVy3AYllyTVqVDpYopp7FCEZNLlOX9Y3jN72qXb3tX2fNZ6l/bv/b2/9/k9a9s97fe2EwCwe/du+Pn54dy5c7h79y7S09OxevVqpKenY/z48U3eH2OMMcbavma/k3FddyJuDA0NDSxbtgxbtmzBy5cv4ezsjNLSUixZsgR2dnZwc3PD9evXcezYsQYfDmOMMcaYamrWk4zro7CwEF988QVOnTqF3377DSYmJnBwcMDy5cvh7u4OAEhJScGXX36Jy5cv49mzZ7CwsMDw4cMRFBQEW1tb5Ofno1u3bkhJSYGDg0Oj4qjvSUqMMcYYaz1a5CTjd8nPz4eTkxNiYmKwdetW3Lp1C2fPnsWIESPg7+8P4M1l4oMGDUJ5eTn279+PzMxM7Nu3DwYGBli7dq0yw2WMMcZYG6XUb3D+8pe/4ObNm8jKyoKOjo7MupKSEojFYlhaWmLo0KE4evRoje1LSkogkUj4GxzGGGPsPdXqvsF58uQJzp49C39//xrFDQBIJBL8/PPPKCoqwqpVq+SOIZFIFBwlY4wxxlRBs14mXpfc3FwQEXr16lVrn5ycHACos09jlZeXo7y8XHjNdzJmjDHGVJfSCpz6HAlT5NGyTZs2yb2T8fuC71CsXHw/IcYYa1lKO0RlY2MDkUiEO3fu1NrH1tYWAOrs01h8J2PGGGPs/aHUk4zHjBmDW7du1XqSsaamJqysrPgkY8YYY4zJVd/f30o7RAUAO3fuxJAhQ+Ds7IwNGzbA3t4elZWVOH/+PMLCwpCZmYkffvgBU6dOxYQJExAQEABra2sUFRUhKioK9+/fR2RkpDBeVlZWjX3Y2dlBU1NTmdNijDHGWCuj9Bv9SaVSfPHFFzh58iSkUimMjY3h5OSEFStWCE8dT0pKwqZNm3DlyhU8f/4cFhYWGDlyJIKCgmBtbS18gyPPr7/+ii5durwzDv4GhzHGGGt7FHqZuEgkqnNZv3498vPzZdo6dOgANzc35ObmYseOHcjPz0d5eTkWLFiAEydOICQkRBh/4MCBOHLkCIKCglBeXo7OnTtj9+7dsLa2xvr162WKG319fQwdOhSxsbEgonoVN4wxxhhTbY0qcKRSqbCEhoZCX19fpi0wMFDoe+HCBUilUly+fBnm5uYYN24cHj58KDOemZkZLl68iIKCApn2PXv2oGvXrjX2b2dnJ+wrPj4eNjY2GDduHJ49e9aY6TDGGGNMxTSqwDE1NRUWAwMDiEQimTZdXV2hr5GREUxNTdG3b1/8/e9/x/Pnz5GQkCAznomJCUaNGoW9e/cKbdeuXUNRURHGjh1bY/8aGhrCvvr06YMNGzagtLQU2dnZjZkOY4wxxlSM0i4Tf/XqFX788UcAgFgsrrF+3rx5iIiIEF7v2bMH3t7ecvv+UXl5OcLDwyGRSNCzZ89mjZkxxhhjbZPCr6IaPHgw1NTUUFZWBiKCk5OT8NTwPxo3bhyWLFmCy5cvw8nJCVFRUbh69Sr27NlTo++tW7eEb4nKysqgp6eHQ4cO1XmyEd/JmDHGGHt/KLzAOXToEHr16oXbt29j1apViIiIkHsZt6amJmbNmoXw8HD88ssvsLW1hb29vdwxe/bsiRMnTgAAXrx4gUOHDmHq1Km4ePEiBg4cKHcbZd7JmO8azPhOxowx1rIUXuBYWFjAxsYGNjY2qKysxKRJk3D79m1oaWnV6Dtv3jy4uLjg9u3bmDdvXq1jisViWFtbC68dHR1x7NgxhIaGYt++fXK3WbNmDT7++GPh9dvLzxljjDGmepR6o78pU6YgODgY3333HVasWFFjvZ2dHezs7HDz5k3MnDmzQWOrq6vj1atXta7X0tKSW1QpAv/1zhhjjLUspZ1kDLy5f05AQABCQkJQVlYmt09MTAykUikkEkmt41RWVqKwsBCFhYXIycnBxo0bkZGRAS8vLwVFzhhjjLG2RKnf4ACAj48PPv30U+zYsQOrVq2qsf7Pz6iSJz09HWZmZgAAbW1t9OjRA2FhYZgzZ06943h7A2c+2ZgxxhhrO97+3n7XgxiU/qiG1qKgoIDPwWGMMcbaqHc9mum9LXCqq6vx4MED6OnpQSQStXQ4rcbbk69//fVXfkZXI3EOm4bz13Scw6bh/DWdInNIRHjx4gXMzc2hplb7mTZKP0TVWqipqfFzq+qgr6/P/7GbiHPYNJy/puMcNg3nr+kUlUMDA4N39lHqScaMMcYYY8rABQ5jjDHGVA4XOEyGlpYW1q1bp7R7BqkizmHTcP6ajnPYNJy/pmsNOXxvTzJmjDHGmOrib3AYY4wxpnK4wGGMMcaYyuEChzHGGGMqhwscxhhjjKkcLnDeQ0+ePIG3tzf09fUhkUgwf/58lJaW1rnN77//Dn9/fxgZGUFXVxeTJ0/Gw4cPZfqIRKIaS2RkpCKnohQ7d+6ElZUV2rVrBxcXF9y4caPO/ocPH0avXr3Qrl079OvXD6dPn5ZZT0QIDg6GmZkZ2rdvDw8PD+Tk5ChyCi2uuXPo6+tb473m6empyCm0qIbkLz09HZMnT4aVlRVEIhFCQ0ObPKYqaO4crl+/vsZ7sFevXgqcQctrSA6///57DBs2DIaGhjA0NISHh0eN/gr/LCT23vH09KT+/fvT9evX6cqVK2RtbU0zZsyoc5slS5aQhYUFRUdHU1JSEg0aNIgGDx4s0wcAhYeHk1QqFZZXr14pcioKFxkZSWKxmPbs2UPp6em0cOFCkkgk9PDhQ7n94+LiSF1dnbZs2UIZGRn02WefkaamJt26dUvoExISQgYGBnTs2DFKS0ujCRMmULdu3dp8rmqjiBz6+PiQp6enzHvtyZMnypqSUjU0fzdu3KDAwEA6ePAgmZqa0rZt25o8ZluniByuW7eO7OzsZN6Djx8/VvBMWk5Dczhz5kzauXMnpaSkUGZmJvn6+pKBgQEVFBQIfRT9WcgFznsmIyODAFBiYqLQdubMGRKJRPTbb7/J3aakpIQ0NTXp8OHDQltmZiYBoPj4eKENAB09elRhsbcEZ2dn8vf3F15XVVWRubk5bdq0SW7/adOm0dixY2XaXFxcaPHixUREVF1dTaamprR161ZhfUlJCWlpadHBgwcVMIOW19w5JHpT4Hh5eSkk3tamofn7I0tLS7m/nJsyZlukiByuW7eO+vfv34xRtm5Nfc9UVlaSnp4e7d27l4iU81nIh6jeM/Hx8ZBIJBg4cKDQ5uHhATU1NSQkJMjdJjk5GRUVFfDw8BDaevXqha5duyI+Pl6mr7+/Pzp27AhnZ2fs2bPnnY+zb81ev36N5ORkmXmrqanBw8Ojxrzfio+Pl+kPAKNHjxb65+XlobCwUKaPgYEBXFxcah2zLVNEDt+KjY2FiYkJevbsCT8/PxQXFzf/BFpYY/LXEmO2Zoqcb05ODszNzdG9e3d4e3vj/v37TQ23VWqOHJaVlaGiogIdOnQAoJzPQi5w3jOFhYUwMTGRadPQ0ECHDh1QWFhY6zZisRgSiUSmvVOnTjLbbNiwAVFRUTh//jwmT56MpUuXYvv27c0+B2UpKipCVVUVOnXqJNP+53n/UWFhYZ393/7bkDHbMkXkEAA8PT3x448/Ijo6Gps3b8alS5cwZswYVFVVNf8kWlBj8tcSY7Zmipqvi4sLIiIicPbsWYSFhSEvLw/Dhg3Dixcvmhpyq9McOVy9ejXMzc2FgkYZn4Xv7dPEVc0nn3yCzZs319knMzNToTGsXbtW+NnR0REvX77E1q1bERAQoND9svfPRx99JPzcr18/2Nvbo0ePHoiNjYW7u3sLRsbeF2PGjBF+tre3h4uLCywtLREVFYX58+e3YGStT0hICCIjIxEbG4t27dopbb/8DY6KWLlyJTIzM+tcunfvDlNTUzx69Ehm28rKSjx58gSmpqZyxzY1NcXr169RUlIi0/7w4cNatwHe/IVTUFCA8vLyJs+vJXTs2BHq6uo1rhara96mpqZ19n/7b0PGbMsUkUN5unfvjo4dOyI3N7fpQbcijclfS4zZmilrvhKJBLa2tir3HgSalsOvvvoKISEhOHfuHOzt7YV2ZXwWcoGjIoyNjdGrV686F7FYDFdXV5SUlCA5OVnYNiYmBtXV1XBxcZE7tpOTEzQ1NREdHS20ZWVl4f79+3B1da01ptTUVBgaGrbZB9aJxWI4OTnJzLu6uhrR0dG1ztvV1VWmPwCcP39e6N+tWzeYmprK9Hn+/DkSEhLqzGVbpYgcylNQUIDi4mKYmZk1T+CtRGPy1xJjtmbKmm9paSnu3r2rcu9BoPE53LJlCz7//HOcPXtW5rxPQEmfhc1yqjJrUzw9PcnR0ZESEhLo6tWrZGNjI3OZeEFBAfXs2ZMSEhKEtiVLllDXrl0pJiaGkpKSyNXVlVxdXYX1J06coO+//55u3bpFOTk59N1335G2tjYFBwcrdW7NLTIykrS0tCgiIoIyMjJo0aJFJJFIqLCwkIiIZs+eTZ988onQPy4ujjQ0NOirr76izMxMWrdundzLxCUSCR0/fpxu3rxJXl5eKn+ZeHPm8MWLFxQYGEjx8fGUl5dHFy5coAEDBpCNjQ39/vvvLTJHRWpo/srLyyklJYVSUlLIzMyMAgMDKSUlhXJycuo9pqpRRA5XrlxJsbGxlJeXR3FxceTh4UEdO3akR48eKX1+ytDQHIaEhJBYLKaffvpJ5lL6Fy9eyPRR5GchFzjvoeLiYpoxYwbp6uqSvr4+zZ07V+ZNl5eXRwDo4sWLQturV69o6dKlZGhoSNra2jRp0iSSSqXC+jNnzpCDgwPp6uqSjo4O9e/fn3bt2kVVVVXKnJpCbN++nbp27UpisZicnZ3p+vXrwjo3Nzfy8fGR6R8VFUW2trYkFovJzs6OTp06JbO+urqa1q5dS506dSItLS1yd3enrKwsZUylxTRnDsvKymjUqFFkbGxMmpqaZGlpSQsXLlTZX85EDcvf2/+/f17c3NzqPaYqau4cTp8+nczMzEgsFlPnzp1p+vTplJubq8QZKV9DcmhpaSk3h+vWrRP6KPqzUETUhq/jZYwxxhiTg8/BYYwxxpjK4QKHMcYYYyqHCxzGGGOMqRwucBhjjDGmcrjAYYwxxpjK4QKHMcYYYyqHCxzGGGOMqRwucBh7T8TGxkIkEtV4plhLiIuLQ79+/aCpqYmJEyfK7WNlZYXQ0FClxsUYUx1c4DCmYL6+vhCJRDUWRT6Ub/jw4Vi+fLlM2+DBgyGVSmFgYKCw/dbXxx9/DAcHB+Tl5SEiIkJun8TERCxatEi5gdUhIiICEomkpcMQ5OfnQyQSITU1taVDYaxV4gKHMSXw9PSEVCqVWbp161aj3+vXrxUWg1gshqmpKUQikcL2UV93797FyJEj0aVLl1qLBmNjY2hrays3MMaYyuAChzEl0NLSgqmpqcyirq6O4cOHY9myZVi+fDk6duyI0aNHAwC++eYb9OvXDzo6OrCwsMDSpUtRWloqM2ZcXByGDx8ObW1tGBoaYvTo0Xj69Cl8fX1x6dIl/POf/xS+LcrPz5d7iOrIkSOws7ODlpYWrKys8PXXX8vsw8rKCl9++SXmzZsHPT09dO3aFf/617/qnGt5eTkCAgJgYmKCdu3aYejQoUhMTATw/28diouLMW/ePIhEolq/wfnzISqRSIQffvgBkyZNgra2NmxsbHDixAkAb55s3KVLF4SFhcmMkZKSAjU1Ndy7dw8AUFJSggULFsDY2Bj6+voYOXIk0tLShP5paWkYMWIE9PT0oK+vDycnJyQlJSE2NhZz587Fs2fPhJyuX79eiHPjxo2YM2cOdHV1YWlpiRMnTuDx48fw8vKCrq4u7O3tkZSUJBPb1atXMWzYMLRv3x4WFhYICAjAy5cv6537twWyo6MjRCIRhg8fLjePT58+hbe3N4yNjdG+fXvY2NggPDwcgPzDlqmpqcJ7Bvj/N1cnT55Ez549oa2tjSlTpqCsrAx79+6FlZUVDA0NERAQgKqqKrkxMNYimu2pVowxuXx8fMjLy0vuOjc3N9LV1aWgoCC6c+cO3blzh4iItm3bRjExMZSXl0fR0dHUs2dP8vPzE7ZLSUkhLS0t8vPzo9TUVLp9+zZt376dHj9+TCUlJeTq6koLFy4UnuBbWVlJFy9eJAD09OlTIiJKSkoiNTU12rBhA2VlZVF4eDi1b9+ewsPDhf1YWlpShw4daOfOnZSTk0ObNm0iNTU1IU55AgICyNzcnE6fPk3p6enk4+NDhoaGVFxcTJWVlSSVSklfX59CQ0NJKpVSWVmZ3HEsLS1p27ZtwmsA1KVLFzpw4ADl5ORQQEAA6erqUnFxMRERBQYG0tChQ2XGWLlypUybh4cHjR8/nhITEyk7O5tWrlxJRkZGwhh2dnY0a9YsyszMpOzsbIqKiqLU1FQqLy+n0NBQ0tfXr/FU5Lc52rVrF2VnZ5Ofnx/p6+uTp6cnRUVFUVZWFk2cOJF69+5N1dXVRESUm5tLOjo6tG3bNsrOzqa4uDhydHQkX1/feuf+xo0bBIAuXLhAUqlUmMOf+fv7k4ODAyUmJlJeXh6dP3+eTpw4QURU4z1B9Oa9BYDy8vKIiCg8PJw0NTXpww8/pP/+97906dIlMjIyolGjRtG0adMoPT2d/vOf/5BYLKbIyMha3xeMKRsXOIwpmI+PD6mrq5OOjo6wTJkyhYjeFDiOjo7vHOPw4cNkZGQkvJ4xYwYNGTKk1v5ubm70t7/9Tabtz7/MZs6cSR9++KFMn6CgIOrTp4/w2tLSkmbNmiW8rq6uJhMTEwoLC5O739LSUtLU1KT9+/cLba9fvyZzc3PasmWL0GZgYCBTSMkjr8D57LPPZPYFgM6cOUNEb34xi0QiunfvHhERVVVVUefOnYVYr1y5Qvr6+vT777/L7KdHjx60e/duIiLS09OjiIgIufGEh4eTgYGB3Dj/mCOpVEoAaO3atUJbfHw8ASCpVEpERPPnz6dFixbJjHPlyhVSU1OjV69eyR33z7l/+8TrlJQUufG+NX78eJo7d67cdfUtcADIPCl78eLFpK2tLRR5RESjR4+mxYsX1xkLY8rEh6gYU4IRI0YgNTVVWL799lthnZOTU43+Fy5cgLu7Ozp37gw9PT3Mnj0bxcXFKCsrA/DmMIK7u3uTYsrMzMSQIUNk2oYMGYKcnByZQw329vbCzyKRCKampnj06JHcMe/evYuKigqZcTU1NeHs7IzMzMwmxfvnWHR0dKCvry/E4uDggN69e+PAgQMAgEuXLuHRo0eYOnUqgDeHn0pLS2FkZARdXV1hycvLw927dwG8Ofl5wYIF8PDwQEhIiNDekLg6deoEAOjXr1+NtrexpqWlISIiQiaO0aNHo7q6Gnl5eXLHfVfua+Pn54fIyEg4ODhg1apVuHbtWoO2BwBtbW306NFDZj5WVlbQ1dWVaWtobIwpEhc4jCmBjo4OrK2thcXMzExm3R/l5+dj3LhxsLe3x5EjR5CcnIydO3cC+P9JyO3bt1da7JqamjKvRSIRqqurlbb/hsTi7e0tFDgHDhyAp6cnjIyMAAClpaUwMzOTKTRTU1ORlZWFoKAgAMD69euRnp6OsWPHIiYmBn369MHRo0cbFNfbk7jltb2NtbS0FIsXL5aJIy0tDTk5OTKFRHPkfsyYMbh37x5WrFiBBw8ewN3dHYGBgQAANbU3vwKISOhfUVFR5/zextGa3heMycMFDmOtTHJyMqqrq/H1119j0KBBsLW1xYMHD2T62NvbIzo6utYxxGLxO0/47N27N+Li4mTa4uLiYGtrC3V19UbF3qNHD4jFYplxKyoqkJiYiD59+jRqzIaYOXMmbt++jeTkZPz000/w9vYW1g0YMACFhYXQ0NCQKTatra3RsWNHoZ+trS1WrFiBc+fO4a9//atwQm59clpfAwYMQEZGRo04rK2tIRaL6zXG2371icnY2Bg+Pj7Yt28fQkNDhZOVjY2NAQBSqVToy5edM1XBBQ5jrYy1tTUqKiqwfft2/PLLL/j3v/+NXbt2yfRZs2YNEhMTsXTpUty8eRN37txBWFgYioqKALy5AichIQH5+fkoKiqS+5f1ypUrER0djc8//xzZ2dnYu3cvduzYIfx13xg6Ojrw8/NDUFAQzp49i4yMDCxcuBBlZWWYP39+o8etLysrKwwePBjz589HVVUVJkyYIKzz8PCAq6srJk6ciHPnziE/Px/Xrl3Dp59+iqSkJLx69QrLli1DbGws7t27h7i4OCQmJqJ3797C2KWlpYiOjkZRUZFwuLAxVq9ejWvXrmHZsmVITU1FTk4Ojh8/jmXLltV7DBMTE7Rv3x5nz57Fw4cP8ezZM7n9goODcfz4ceTm5iI9PR0nT54U5mRtbQ0LCwusX78eOTk5OHXqVI0r6Rhrq7jAYayV6d+/P7755hts3rwZffv2xf79+7Fp0yaZPra2tjh37hzS0tLg7OwMV1dXHD9+HBoaGgCAwMBAqKuro0+fPjA2Nsb9+/dr7GfAgAGIiopCZGQk+vbti+DgYGzYsAG+vr5Nij8kJASTJ0/G7NmzMWDAAOTm5uLnn3+GoaFhk8atL29vb6SlpWHSpEkyh/JEIhFOnz6NDz74AHPnzoWtrS0++ugj3Lt3D506dYK6ujqKi4sxZ84c2NraYtq0aRgzZgz+8Y9/AHhzo8QlS5Zg+vTpMDY2xpYtWxodo729PS5duoTs7GwMGzYMjo6OCA4Ohrm5eb3H0NDQwLfffovdu3fD3NwcXl5ecvuJxWKsWbMG9vb2+OCDD6Curo7IyEgAbw49HTx4EHfu3IG9vT02b96MjRs3NnpejLUmIvrjwVfGGGOMMRXA3+AwxhhjTOVwgcMYY4wxlcMFDmOMMcZUDhc4jDHGGFM5XOAwxhhjTOVwgcMYY4wxlcMFDmOMMcZUDhc4jDHGGFM5XOAwxhhjTOVwgcMYY4wxlcMFDmOMMcZUDhc4jDHGGFM5/wNtrjTR6bEgQQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# adjust RHS of short constraint\n", "short_constr.RHS = 0\n", "m.params.OutputFlag = 0\n", "m.optimize()\n", "\n", "# retrieve and display solution data\n", "mask = (abs(df[\"x\"]) > 1e-5) | (x.X > 1e-5)\n", "df2 = pd.DataFrame(\n", " index=df[\"x\"][mask].index,\n", " data={\n", " \"130/30\": df[\"x\"][mask],\n", " \"100/0\": x.X[mask],\n", " },\n", ").sort_values(by=[\"130/30\", \"100/0\"], ascending=True)\n", "\n", "axs = df2.plot.barh(color=[\"#0b1a3c\", \"#dd2113\"])\n", "axs.set_xlabel(\"Fraction of investment sum\")\n", "plt.title(\"Minimum Variance portfolios with and without short-selling\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "fce516ba", "metadata": {}, "source": [ "## Efficient Frontiers\n", "\n", "The efficient frontier reveals the balance between risk and return in investment portfolios. It shows the best-expected return level that can be achieved for a specified risk level.\n", "We compute this by solving the above optimization problem for a sample of admissible risk levels for four long/short strategies; 100/0 is the long-only strategy.\n", "Note that to change the strategy in the model, we only need to update the right-hand side of constraint (2) above." ] }, { "cell_type": "code", "execution_count": 13, "id": "519d5b3e", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:05:05.311749Z", "iopub.status.busy": "2025-01-31T10:05:05.311548Z", "iopub.status.idle": "2025-01-31T10:05:30.183919Z", "shell.execute_reply": "2025-01-31T10:05:30.183238Z" } }, "outputs": [], "source": [ "risks = np.linspace(1.5, 5, 20)\n", "# risks = np.concatenate(([0], np.logspace(-5, 0, 7, endpoint=False), np.linspace(1, 4, 12)**2), axis=0)\n", "# risks = np.concatenate(([0], np.sqrt(np.geomspace(1e-10, 32**2, 20))), axis=0)\n", "strategies = [0, 0.1, 0.2, 0.3]\n", "\n", "returns = pd.DataFrame(index=risks)\n", "\n", "# hide Gurobi log output\n", "m.params.OutputFlag = 0\n", "\n", "for short in strategies:\n", " name = f\"{int((1+short)*100)}/{int(short*100)}\"\n", " # adjust RHSs in short constraint\n", " short_constr.RHS = short\n", "\n", " r = np.zeros(risks.shape)\n", " # solve the model for each risk level\n", " for i, risk_level in enumerate(risks):\n", " # set risk level: RHS of risk constraint\n", " risk_constr.QCRHS = risk_level**2\n", "\n", " m.optimize()\n", " # store data\n", " r[i] = m.ObjVal\n", "\n", " returns[name] = r" ] }, { "cell_type": "markdown", "id": "55aab32a", "metadata": {}, "source": [ "We can display the efficient frontiers for all strategies. We plot the expected returns (on the $y$-axis) against the standard deviation $\\sqrt{x^\\top\\Sigma x}$ of the expected returns (on the $x$-axis)." ] }, { "cell_type": "code", "execution_count": 14, "id": "52ab45f1", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T10:05:30.186199Z", "iopub.status.busy": "2025-01-31T10:05:30.185975Z", "iopub.status.idle": "2025-01-31T10:05:30.330442Z", "shell.execute_reply": "2025-01-31T10:05:30.329737Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA1CFJREFUeJzsnXd4VMXbhu+zLb33hJDQpEhooUgRkBakCKLSVDpYUEEEbHREP0Waoj9sIBYERCkKUqSJgIj03jvpkF529+z5/liysGSTbCCVzH1duWDnzMyZOdlk38zM+zySoigKAoFAIBAIBBUIVWkPQCAQCAQCgaCkEQGQQCAQCASCCocIgAQCgUAgEFQ4RAAkEAgEAoGgwiECIIFAIBAIBBUOEQAJBAKBQCCocIgASCAQCAQCQYVDU9oDKIuYTCauX7+Om5sbkiSV9nAEAoFAIBDYgaIopKamEhwcjEqV/xqPCIBscP36dUJDQ0t7GAKBQCAQCO6BK1euUKlSpXzriADIBm5uboD5Abq7uxdp3waDgY0bN9KpUye0Wm2R9l0eEPOv2PMH8Qwq+vxBPAMx/+Kbf0pKCqGhoZbP8fwQAZANcra93N3diyUAcnZ2xt3dvcK+8cX8K+78QTyDij5/EM9AzL/452/P8RVxCFogEAgEAkGFQwRAAoFAIBAIKhwiABIIBAKBQFDhEGeA7gNZljEYDIVqYzAY0Gg0ZGVlIctyMY2s7CLmf3/z12q1qNXqYhiZQCAQVCxEAHQPKIpCTEwMSUlJ99Q2MDCQK1euVEiNITH/+5+/p6cngYGBFfL5CQQCQVEhAqB7ICf48ff3x9nZuVAfRCaTibS0NFxdXQsUaXoQEfO/9/krikJGRgZxcXEABAUFFccQBQKBoEIgAqBCIsuyJfjx8fEpdHuTyYRer8fR0bHCBgBi/vc+fycnJwDi4uLw9/cX22ECgUBwj1S8T6D7JOfMj7OzcymPRFBRyXnvFfb8mUAgEAhuIwKge0ScvxCUFuK9JxAIBPePCIAEAoFAIBCUCIosk7V3NwBZe3ejlGI2sAiABAKBQCAQFDvp63/n8qMNiRnaH4CYof25/GhD0tf/XirjEQGQQCAQCASCYiV9/e/EjhyMHHPdqlyOjSZ25OBSCYJEACRg0KBB9OzZs8j6a9u2LaNHjy6y/u6X1157jcjISBwcHGjQoIHNOocPH+bRRx/F0dGR0NBQPvroo1x1fv75Z2rVqoWjoyMRERGsW7fOZl+PPfYYX3/9NQCXL1+ma9euODs74+/vz/jx4zEajUU2N4FAICjrKLJMwrR3QFFuFSg4Xr9ifn2rLGH6uyW+HSYCIIHdlOesoyFDhtCnTx+b11JSUujUqRNhYWHs27ePmTNnMmXKFL788ktLnV27dtGvXz+GDh3KgQMH6NmzJz179uTo0aNWfd24cYOdO3fSvXt3ZFmma9eu6PV6du3axeLFi1m8eDHvv/9+sc5VIBAIyhJZe3dbrfyo9HpqzJyClBPwKApy9DXL2aCSQgRARYCiKKRnZNr9lZGRVaj6eX0pOdG0HaxYsYKIiAicnJzw8fGhQ4cOpKenM2XKFBYvXszq1auRJAlJkti2bRsXL15EkiSWLVtGmzZtcHR05McffyQxMZF+/foREhKCs7MzERER/PTTT5b7DBo0iO3btzNv3jxLfxcvXgTg6NGjdOnShUqVKhEUFMTzzz9PQkKCpW1qairPPvssLi4uBAUFMWfOHKvVpGnTplG3bt1cc2vQoAETJ07Mc+6ffPIJI0eOpGrVqjav//jjj+j1ehYuXMjDDz9M3759ee2115g9e7alzrx58+jcuTPjxo2jdu3aTJ8+nUaNGjF//nyrvtauXUujRo0ICAhg48aNHD9+nB9++IEGDRrw+OOPM3XqVL7++mv0en2B3zOBQCAozygGA5k7/yLp8zlW5RIKJq0WsP4Mk+NiS3B0QgixSMjIzCKgRqcSv2/smY24ODsVWC86Opp+/frx0Ucf8eSTT5KamsqOHTtQFIWxY8dy4sQJUlJSWLRoEQDe3t5cv26O1t966y1mzZpFw4YNcXR0JCsri8jISN58803c3d1Zu3Ytzz//PNWqVaNp06bMmzeP06dPU7duXaZNmwaAn58fSUlJtGvXjqFDhzJt2jTUajVvv/02vXv3ZsuWLQCMGTOGnTt3smbNGgICApg0aRL79++3bFsNGTKEqVOnsnfvXpo0aQLAgQMHOHz4ML/++us9P8fdu3fTunVrdDqdpSwqKooPP/yQmzdv4uXlxe7duxkzZoxVu6ioKFatWmVVtmbNGnr06GHpNyIigoCAAKs2I0eO5NixY0RGRt7zmAUCgaAsYsrKJPPvbaRvWEfG5vWYkm7mqiNrtJycPpdak9+AO7a91P4BueoWJyIAqgBER0djNBrp1asXYWFhAERERFiuOzk5kZ2dTWBgYK62o0ePplevXlZlY8eOtfz/1VdfZcOGDSxfvpymTZvi4eGBTqfD2dnZqr/58+fTsGFDZsyYQUpKCu7u7ixcuJDQ0FBOnz5NUFAQixcvZsmSJbRv3x6ARYsWERwcbOmjUqVKREVFsWjRIksAtGjRItq0aZPn6o49xMTEUKVKFauynKAlJiYGLy8vYmJirAKZnDoxMTGW19nZ2axfv54pU6ZY2tpqk3NNIBAIHgRMqalkbNtE+oa1ZGz7EyUj3XJN5e2Dc4fOZGz6A9PNG+ZCtRqTg+PtDiQJdWAwjk2al+i4RQBUBDg7ORJ7ZqNddU0mE6kpqbi5u923FYSzk2PBlYD69evTvn17IiIiiIqKolOnTjz99NN4eXkV2LZx48ZWr2VZ5v3332f58uVcu3YNvV5PdnZ2gcrYhw4dYuvWrbi7u+e6du7cOTIzMzEYDDRt2tRS7uHhQc2aNa3qDh8+nCFDhjB79mxUKhVLlixhzpw5d3dZKmzZsgV/f38efvjh0h6KQCAQ3DM5Wj1yXCxq/wAcmzRHust2R05MIP3P9aRv+J3MXX/BHdv66qBgXKK64RLVFcfIZkgaDeltOxI7cnDum90SdvWdOCPXPYobEQAVAZIk2bUVBeYASDYacHF2KjEvLLVazaZNm9i1axcbN27k008/5d1332XPnj25Vj7uxsXFxer1zJkzmTdvHnPnziUiIgIXFxdGjx5d4JmWtLQ0unfvzgcffJDLDDQoKIizZ8/aNZfu3bvj4ODAypUr0el0GAwGnn76abva5kVgYCCxsdZ7zzmvc1ax8qpz5yrXmjVreOKJJ6z6/ffff/PtVyAQCMoS6et/J2HaO1aHltWBwfhOeh+Heg1J37SO9A2/k/XvbjCZLHW0Vatbgh5dRINcivUunbsR8Nkic985K0E5fU+cgUvnbsU/ubsQAVAFQZIkWrZsScuWLZk0aRJhYWGsXLmSMWPGoNPpkO1MP9y5cyc9evTgueeeA8wB3enTp6lTp46ljq3+GjVqxC+//EJ4eDgZGRm4u7tbBYBVq1ZFq9Wyd+9eKleuDEBycjKnT5+mdevWlnoajYaBAweyaNEidDodffv2tRiE3ivNmzfn3XffxWAwoNVqAdi0aRM1a9a0rJI1b96czZs3W6X3b9q0iebNzUu2iqLw22+/8cMPP1j1O2PGDItxaU4bNzc3q+clEAgEZYEcrR7uSrCRY64T+/KgXPV1devdCnq6oav+UIH9u3TuhnPHx0nbs5Pj8TcJ/GYJrs1alvjKTw4iC6wCsGfPHt5//33+++8/Ll++zK+//kp8fDy1a9cGIDw8nMOHD3Pq1CkSEhLyTXevUaOGZTXpxIkTvPDCC7lWRsLDw9mzZw8XL14kISEBk8nEyJEjuXHjBv3792f//v2cO3eODRs2MHjwYGRZxs3NjYEDBzJu3Di2bt3KsWPHGDp0KCqVKtdfEsOGDWPLli2sX7+eIUOGFDj/s2fPcvDgQWJiYsjMzOTgwYMcPHjQsmrVv39/dDodQ4cO5dixYyxbtox58+ZZHXoeNWoU69evZ9asWZw8eZIpU6bw33//8corrwCwb98+MjIyaNWqlaVNp06dqFOnDs8//zyHDh1iw4YNTJo0iWHDhuHg4FDguAUCgaCkyKXVkwcOjZvh/e50Qv/aT6U1W/AaOcau4CcHSa22nPWxtbVWkogAqALg7u7OX3/9RZcuXXjooYeYMGECs2bN4vHHHwfM52pq1qxJ48aN8fPzY+fOnXn2NWHCBBo1akRUVBRt27YlMDAwl4ji2LFjUavV1KlTBz8/Py5fvkxwcDA7d+5ElmV69epF/fr1GT16NJ6enpaVoNmzZ9O8eXO6detGhw4daNmyJbVr18bR0fqsU40aNWjRogW1atWiWbNmBc5/2LBhNGzYkC+++ILTp0/TsGFDGjZsaMl08/DwYOPGjVy4cIHIyEjeeOMNJk2axIgRIyx9tGjRgiVLlvDll19Sv359VqxYwapVqyxp+atXr6ZLly5oNLcXVdVqNb///jtqtZrmzZvz3HPP8fzzz/POO+8UOGaBQCAoKRRFIfXnH3OpNNvCe8zbeA59CW2lyiUwsuJFbIFVAGrXrs369evzvO7n58fGjbkPcdvSGfL29s6V+n03Dz30ELt35xa0qlGjBr/88oslC+zuM1Bubm78+OOPltfp6elMnTrVKhDJGdf169d5+eWX8x1HDtu2bSuwTr169dixY0e+dZ555hmeeeYZm9dWr17NhAkTcpWHhYVZKUabTCZSUlIKHI9AIBAUJ4qioD92mPR1a0j7Yw3GSxfsalfSWj3FiQiABGWGAwcOcPLkSZo2bUpycrJFRyhHVwcgPj6epUuXEhMTw+DBNjIKSgG9Xs9TTz1lWVETCASCsoiiKOiPHCTtj99I/2MNxssXb1/U6sBQsEBrSWv1FCciABKUKT7++GNOnTqFTqcjMjKSHTt24Ovra7nu7++Pr68vX375pV1p/CWBTqdj8uTJpT0MgUBQQbAnTd1SV1HIPnyA9D/WkP7HbxivXLJckxydcG7bAZcuT+DUuj1XO7dCjo22fQ6olLR6ihMRAAnKDA0bNmTfvn351imM/YdAIBA8aOSXpp6TSq4oCtmH9pO+brU56Ll2xVJXcnLG+bGOuDzeHee2HVC5uFqu+U5635wFJknWQVApavUUJyIAEggEAoGgHJBnmnpsNLEvD8Jr7ARMNxJI++M35OhrluuSkzPO7Tri8ngPnNu2R+XscnfXwF1aPXcHWKWk1VOciABIIBAIBIIyTr5p6rfKbn78nqVIcnbBuV0nXLv0wKlNO1RO+av155Cj1WPvFlt5RgRAAoFAIBCUcbL27rYrTd2xRWs8BgzDqfVjqBzvTSRWUqtxeqRVwRXLOSIAEggEAoGgDKMoClkH/rOrrnvvZ3Hp1KWYR/RgIAIggUAgEAjKIPrzZ0n/fSVpv6/EcPa0XW0epDT14kYEQAKBQCAQlBGM166Stm4Vab/9iv7oYUu5pHNAkSTIzrLd8AFMUy9uhBWGgEGDBuWys7gf2rZta2UaWtq89tprREZG4uDgQIMGDXJdz8rKYtCgQURERKDRaPJ8Ftu2baNRo0Y4ODhQvXp1vv32W5v1Bg8ebFGFnjFjBi1atMDZ2RlPT0+b9S9fvkzXrl1xdnbG39+fcePGYTQa72GmAoGgPCInxJP83Tdce6Yrlx9twI0PppiDH7Uap9bt8Js5n7B/TxAwZ4E5Jf0uf8QHNU29uBErQAK7udMtvbwxZMgQ9uzZw+HDh3Ndk2UZJycnXnvtNX755Reb7S9cuEDXrl158cUX+fHHH9m8eTPDhg0jKCiIqKgoq75+//131q5dC5hVop955hmaN2/ON998Y/PeXbt2JTAwkF27dhEdHc2AAQPQarW8//77RTR7gUBQktgjVKjKzCDtl6VkrVtN5q6/wGQyX5AkHJs8gmv3Xrh07o7a57YQbEVLUy92FEEukpOTFUBJTk7OdS0zM1M5fvy4kpmZeU99y7Ks3Lx5U5Fl+X6HWSh+/vlnpW7duoqjo6Pi7e2ttG/fXklLS1MmT56sAFZfW7duVS5cuKAAytKlS5XWrVsrDg4OyqJFi5SEhASlb9++SnBwsOLk5KTUrVtXWbJkieU+AwcOzNXfhQsXFEVRlCNHjihRUVGKi4uL4u/vrzz33HNKfHy8pW1KSorSv39/xdnZWQkMDFRmz56ttGnTRhk1apSiKIoydepU5eGHH841t/r16ysTJkwo8BlMnjxZqV+/fr51Bg4cqPTo0SNX+fjx43Pdu0+fPkpUVJRV2V9//aUEBQUpJpPJqnzRokWKh4dHru//unXrFJVKpcTExFjq/u9//1Pc3d2V7Oxsm2O83/dgaaPX65VVq1Yper2+tIdSKlT0+SvKg/0M0v74TbnYPEI5V8XH8nWxeYSS9sdvipyepqSu+UW5NrS/cqZ6gFWdqz06KDe/+kwxXL9W4D1MRqOSsXuHkrp6hZKxe4diMhpLYGZFR3F+//P7/L4bsQJUBCiKgt5osquuSTGhN5rINsqopPtTNdZpVEh3L4XaIDo6mn79+vHRRx/x5JNPkpqayo4dO1AUhbFjx3LixAlSUlJYtGgRYDY8zXFKf+utt5g1axYNGzbE0dGRrKwsIiMjefPNN3F3d2ft2rU8//zzVKtWjaZNmzJv3jxOnz5N3bp1LV5efn5+JCUl0a5dO4YOHcq0adNQq9W8/fbb9O7dmy1btgAwZswYdu7cyZo1awgICGDSpEns37/fsm01ZMgQpk6dyt69e2nSpAlg9g87fPgwv/766309y4LYvXs3HTp0sCqLiorKtdW3Zs0aunfvbtf3JaffiIgIAgJuH1yMioripZde4tixYzRs2PC+xy4QCEqGPIUKY64T+/Ig0OlAb/bbUgGaGjVxe+IpXLv2RBte1e77lOc0dUWRkZN3AiAn70Tj8yiSVDrbdiIAKgL0RhOjfsrtfl7czOvXHAdtwW+c6OhojEYjvXr1IiwsDICIiAjLdScnJ7KzswkMDMzVdvTo0fTq1cuqbOzYsZb/v/rqq2zYsIHly5fTtGlTPDw80Ol0ODs7W/U3f/58GjZsyIwZMyxu8AsXLiQ0NJTTp08TFBTE4sWLWbJkCe3btwdg0aJFBAcHW/qoVKkSUVFRLFq0yBIALVq0iDZt2lC1qv2/PO6FmJgYqyAFICAggJSUFDIzM3FyMuttrF69mjlz5tx3vznXBAJB+SBfocIc9Ho0oWE4de3BPncf2g8dUW6PFdwLcsJK9GfHYMy+AXyH4VgPFAdvdNVno/Z9ssTHIw5BVwDq169P+/btiYiI4JlnnuGrr77i5s2bdrVt3Lix1WtZlpk+fToRERF4e3vj6urKhg0buHz5cr79HDp0iK1bt+Lu7k6lSpVwd3enVq1aAJw7d47z589jMBho2rSppY2Hhwc1a9a06mf48OH89NNPZGVlodfrWbJkCUOGDLFrLsXNiRMnuH79uiWAEwgEFQd7hQp9/28unq+/TXZQpRIYVdlBTliJ/nhf0F+zvqC/jv54X+SElSU+JrECVAToNCrm9bMv9dCkmEhNScXN3Q2VdH/xp05jX3u1Ws2mTZvYtWsXGzdu5NNPP+Xdd99lz549VKlSJd+2Li7WnjEzZ85k3rx5zJ07l4iICFxcXBg9ejT6W8u6eZGWlkb37t354IMPSEtLw9XVFZXKPP6goCDOnj1r11y6d++Og4MDK1euRKfTYTAYePrpp+1qez8EBgYSGxtrVRYbG4u7u7tl9WfNmjV07NgRR0fHQvX777//5uo355pAICjbGONjSVv9CymLv7Krvik+rphHVPZQFBn92TGYj4UCKATrtgKmW2US+nNv4OjzRIluh4kAqAiQJMmurSgAk0kiW6PCQaO2BAAlgSRJtGzZkpYtWzJp0iTCwsJYuXIlY8aMQafTIcuyXf3s3LmTHj168NxzzwFgMpk4ffo0derUsdSx1V+jRo345ZdfCA8PJyMjA3d3d6v5V61aFa1Wy969e6lcuTIAycnJnD59mtatW1vqaTQaBg4cyKJFi9DpdPTt29cSgBQnzZs3Z926dVZlmzZtonnz24Hv6tWrGTFiRKH7nTFjBnFxcfj7+1v6dXd3t3qmAoGg7GDKzCBj4zpSV/1M5o6ttzO47KAiChXKSTusVn7UZFHX5XNMlmPICmRfxZT8N2rPNiU2rlLfAvvss88IDw/H0dGRZs2a5fpr+G6SkpIYOXIkQUFBODg48NBDD+X6YCpsnw86e/bs4f333+e///7j8uXL/Prrr8THx1O7dm0AwsPDOXz4MKdOnSIhIQGDwZBnXzVq1LCsJp04cYIXXngh18pIeHg4e/bs4eLFiyQkJGAymRg5ciQ3btygf//+7N+/n3PnzrFhwwYGDx6MLMu4ubkxcOBAxo0bx9atWzl27BhDhw5Fpcp90HvYsGFs2bKF9evX27X9dfbsWQ4ePEhMTAyZmZkcPHiQgwcPWq1aHT9+nIMHD3Ljxg2Sk5MtdXJ48cUXOX/+POPHj+fkyZN8/vnnLF++nNdffx2AuLg4/vvvP7p1s05DvXz5MgcPHuTy5cvIsszBgwc5cuQIaWlpAHTq1Ik6derw/PPPc+jQITZs2MCECRMYOXIkDg4OBc5NIBCUDIosk7nzL+LGvcKlprWJe/1FMrdvBpMJh4aN8Znyf6j8A3Nr9OQgSaiDQiqMUKFiyka+sQn92dEYTva3uiZJkGKsgoL1s1L00SU5xNJNg1+6dKmi0+mUhQsXKseOHVOGDx+ueHp6KrGxsTbrZ2dnK40bN1a6dOmi/P3338qFCxeUbdu2KQcPHrznPm3xoKXBHz9+XImKilL8/PwUBwcH5aGHHlI+/fRTy/W4uDilY8eOiqura640+AMHDlj1lZiYqPTo0UNxdXVV/P39lQkTJigDBgywSh0/deqU8sgjjyhOTk5WafCnT59WevbsqXh4eChOTk5KrVq1lNGjR1tSxm2lwTdt2lR56623cs3p0UcftZkSb4s2bdrkSs2/c1yKoihhYWE269zJ1q1blQYNGig6nU6pWrWqsmjRIsu1r7/+WmnZsmWue9uSBQCUzZs3W+pcvHhRefzxxxUnJyfF19dXeeONNxSDwZDnfEQafPmmos9fUcrGM7A3lTz75HEl4YMpysXmda3S1i+1bqQkzv5A0Z8/a6mb9sdvyrmqvuavO+rmlKX98ZuiKGVj/sWBKTtOMUQvVrKOPaNk/O2lZGzX2vxK2eamrFq1SknZ5m5Vbry57b7HUJg0eElR8juyXrw0a9aMJk2aMH/+fMC8nRIaGsqrr77KW2+9lav+ggULmDlzJidPnszz5Hxh+wTIzs4mOzvb8jolJYXQ0FASEhJwd3e3qpuVlcWVK1csK0yFRVEUUlNTcXNzsztV+kGiMPNPT08nNDSUmTNnMnToUKs+atasyUsvvWRZgSltevToQatWrRg3bly+9Yri+5+VlcXFixcJDQ29p/dgaWMwGNi0aRMdO3asUBkwOVT0+UPpP4OMP9eT+OE05NjbKw7qgCB83pyEc4fOyPFxZKxdSfrqFRiOH7XUkdw9cH78CVx6PI2uURObP8M2+w4Mxmf8RJw7dAZKf/4FoSgyppR/UPQxSLpAVO6P2DyboygKZBxDSfoD040/IO1fbp/zAbSBSF6PI3l1Rn/2TTDGAQpGxZG/kr+ktccINFIWIIEuCIfIA/d9BiglJQVfX1+Sk5NzfX7fTakFQHq9HmdnZ1asWGFlPTBw4ECSkpJYvXp1rjZdunTB29sbZ2dnVq9ejZ+fH/379+fNN99ErVbfU58AU6ZMYerUqbnKlyxZgrOzs1WZRqMhMDCQ0NBQdDrdvU1eYJPDhw9z+vRpIiMjSUlJ4aOPPuLvv/9m//79+Pj4AJCQkMCvv/7KtGnTOHr0aJ72EiXNvHnzeOqpp6hUqfgzO/R6PVeuXCEmJkZYZggERYSkz8b9yAG8/tuN66ljSLc+Gk1qNam1I0hq3JzUOvVRymDAUpJIGPDWHMdP+x9+2n04qeOtrqcYqxBvaEy8IZIUuQolfdImIyOD/v372xUAldoh6ISEBGRZtqmBcvLkSZttzp8/z5YtW3j22WdZt24dZ8+e5eWXX8ZgMDB58uR76hPg7bffZsyYMZbXOStAnTp1ynMFyNXVVawA3QP5zd/FxYX//e9/nDp1Cp1OR6NGjfjrr7+sMtW8vLzw9fVlwYIFlsPSZYGJEyfaVa+oVoCcnJxo3bq1WAEqh1T0+UPpPQNFlrna+dHbqzOKAooJSZaRTCarEym6BpE4P/E0zl2eQO3lXaTjKKvvATnxdwynBmO1inMLCRm1WwPIOA6mtDsuOCJ5tEXy7oLk+TjeDsF4AzVz9XCr//NvY9TfvL0C5OCNtsr7qH2KxsYjJSXF7rrlKgvMZDLh7+/Pl19+iVqtJjIykmvXrjFz5kwmT558z/06ODjYPHCq1WpzvTllWUaSJFQq1T1lcZluZQvk9FHRyG/+kZGR7Nu3L9/2pbhjWyQUxfc/52C4rfdneaK8j/9+qejzh5J/Bpn79sDlCxS0yeI363Pcnuxd7OMpS+8BRZExXhyDRsrIu1LarYQiXRBq7y6ofbqi8myHpHbOu80daAOfxCHgCbITd8DOZJzqLsOhiJWgC/M8Sy0A8vX1Ra1W29RWyUv/JCgoCK1Wi/oOU7natWsTExODXq+/pz4FAoFA8OCj6PWkb1xXcEWokI7qd6eq54Wm+nw0QcOQ7lHHTpLUqD1aAutQe7QsNRsMKMU0eJ1OR2RkJJs3b7aUmUwmNm/ebKWtcictW7bk7Nmzlr+iAYuNgk6nu6c+BQKBQPDgoj93hsT3J3GpRQQp335pV5uKotWjKDJy0nb0Z1/HcKKvXW0kjfs9Bz9ljVLdAhszZgwDBw6kcePGNG3alLlz55Kens7gwYMBGDBgACEhIXzwwQcAvPTSS8yfP59Ro0bx6quvcubMGd5//31ee+01u/sUCAQCwYONKSuT9D9+I3Xpd2Tt/cdSrvYPwJSejpKeZruhJKEODH6gtXoUUzampK3ICauQE38DQ3zBje5A0gUV08hKnlINgPr06UN8fDyTJk0iJiaGBg0asH79essh5suXL1udkwgNDWXDhg28/vrr1KtXj5CQEEaNGsWbb75pd58CgUAgeDDJPnGU1KXfk7bqZ0yptw7DqlQ4P9YRtz7P4dy2Ixl/rjc7toO1cemtpATfiTPK/BaYosiYkv9G0Ucj6YJQebTKdytJkdMx3dhgDnpurAP5joPCGm/UPt1R+TyB4cyrYIjG1iFokMAhBJVH+XSht0WpH4J+5ZVXeOWVV2xe27ZtW66y5s2b888//+SubGefAoFAIHhwMKWlkvbbr6Qu/Z7sIwct5ZpKlXHr/SxuT/dHE3h71cKlczcCPltEwrR3rMxL1YHB+E6cgUvnoslGKi5yHNWtzuvoQnI5qivGJOTEtcgJqzDd3AimzDvqB6H26YHatycqz9ZIkjkUkDCaDUuRsA6CzMGhrtqsUj2zU9SUegAkEAgEAsHdKLJsdliPi0XtH4Bjk+aWlRlFUcg+tJ/Upd+R9vsqlIx0cyOtFpeOXXDr8zxOLVsj5ZFp6dK5G84dH8+z/7KKxVH97hWaW47q2oe+AMVoDnqStoByWydMcqyC2vdJVL49Ubk1tXmOR+37JLo6S3MHWA4h6KrNsgqwHgREACQQCASCMkX6+t9trtB4v/EOptQUUpZ+j+H0Ccs1bdXquPV9Hrcn+6D28bXrHpJajdMj5Wc7J7ejutVVAAynrc2YJec6qH17ovbtieRS3y7tMbXvkzj6PFGoLbbyyoNxlFtwXwwaNMhKOft+adu2LaNHjy6y/u6X1157jcjISBwcHGjQoEGu69u2baNHjx4EBQXh4uJCgwYN+PHHH3PV+/nnn6lVqxaOjo5ERETkMuHN4bHHHuPrr7/m0KFD9OvXj9DQUJycnKhduzaffPKJzfs3atQIBwcHqlevzrfffnu/UxYIyi3p638nduRgq+AHQI65Tvy4V0ic9g6G0yeQHBxx7dWHoKW/UWnTbjyHjbQ7+CmPmJL/titNXXJ6CE34dBwaH8Gx8UG04VNQuTYolPCqJKlRe7ZB498XtWebBzL4AREACQpBfi7xZZ0hQ4bQp08fm9d27dpFvXr1+OWXXzh8+DCDBw9mwIAB/P7771Z1+vXrx9ChQzlw4AA9e/akZ8+eHD161KqvGzdusHPnTrp3786+ffvw9/fnhx9+4NixY7z77ru88847fPnl7VTcCxcu0LVrVx577DEOHjzI6NGjGTZsGBs2bCieByEQlGEUWSZh2jvWh5PvRqPFZ/IHVN5zDP+PP8OpafMKoapvSjtoVz1N2AS0ld9E5WxLi1lgxX1brz6APGhu8IqiKD///LNSt25dxdHRUfH29lbat2+vpKWlKZMnT87lVH6nG/zSpUuV1q1bKw4ODsqiRYuUhIQEpW/fvkpwcLDi5OSk1K1bV1myZInlPrbcz3Nc148cOaJERUUpLi4uir+/v/Lcc88p8fHxlra23ODbtGmjjBo1SlEURZk6dapNB/j69esrEyZMKPAZTJ48Walfv75dz6tLly7K4MGDLa979+6tdO3a1apOs2bNlBdeeMGq7LvvvlOaNWuWZ78vvfSS8uijj1q+/+PHj881pz59+ihRUVF59iHc4Ms3FX3+ipL3M8jYvcPaRT2Pr4zdO0pp5EWDve8BOeOMor/0f0rmviZ5Oqvf/VUUjurFTXH+DBTGDV6sABUBiqKgyOl2f2Gyv26+X3baQkRHR9OvXz+GDBnCiRMn2LZtG7169UJRFMaOHUvv3r3p3Lkz0dHRREdH06JFC0vbt956i1GjRnHixAmioqLIysoiMjKStWvXcvToUUaMGMHzzz/Pv/+aJdLnzZtH8+bNGT58uKW/0NBQkpKSaNeuHQ0bNmTLli2sW7eO2NhYeve+LTc/ZswYdu7cyZo1a9i0aRM7duxg//79lus549+7d6+l7MCBA5ZVm6IkOTkZb+/b/j+7d++mQ4cOVnWioqLYvXu3VdmaNWvo0aNHvv16eXkVul+B4EFGMRrN534mjrervhwXW3Clcoop8yyGyx+Sta8J2XvrYLw4ESXtIKAGKbdl020kcKj0QKWpFzfiEHRRYMoga6dXwfVu4QDoi+C2ji1vgtqlwHrR0dEYjUZ69epFWFgYABEREZbrTk5OZGdn27QLGT16NL169bIqGzt2rOX/r776Khs2bGD58uU0bdoUDw8PdDodzs7OVv3Nnz+fhg0bMmPGDFJSUnB3d2fhwoWEhoZa1LwXL17MkiVLaN++PQCLFi0iODjY0kelSpWIiopi0aJFNGnSxFKnTZs2VK1a1Z5HZhfLly9n7969fPHFF5aymJgYmya7MTExltfZ2dmsX7+eKVOm2Ox3165dLF++nGXLlhXYb0pKCpmZmTg5ORXBjASCsomcdJP0X5eS8v1CjNev2t2urCs1F1anx5R5Bjn+F+T4X1DSD91xRY3K8zHUfk+h9u2BKXnHrSwwqAhp6sWNCIAqAPXr16d9+/ZEREQQFRVFp06dePrpp61WIvKicePGVq9lWeb9999n+fLlXLt2Db1eT3Z2Ns7O+ZvhHTp0iK1bt+Lu7p7r2rlz58jMzMRgMNC0aVNLuYeHBzVrWu9jDx8+nCFDhjB79mxUKhVLlixhzpw5Bc7DXrZu3crgwYP56quvePjhhwvVdsuWLfj7+9tsd/ToUXr06MGkSZNo165dUQ1XICiX6E8eJ2TZt0S/PRIlKwsAlbcPbn2eI3XFUkwJcbbPAZUDpWZ7dXqcVdGYrs4k68bK3EGPVzvUvk+h9n0CSXv7YHdFS1MvbkQAVBSonM2rMXZgMplITU3Bzc39/t3gVfY58KrVajZt2sSuXbvYuHEjn376Ke+++y579uyhSpUq+bZ1cbFeYZo5cybz5s1j7ty5RERE4OLiwujRo9Hr81/TSktLo3v37nzwwQekpaXh6upqmX9QUBBnz561ay7du3fHwcGBlStXotPpMBgMPP3003a1LYjt27fTvXt35syZw4ABA6yuBQYGFmiyu2bNGp544olc/R4/fpz27dszYsQI3n33XVJSbquw5tWvu7u7WP0RPFAoRiMZmzeQvPhLsv7ZiTfmNQzdwxF4DByBS/cnUTk44hjR0KzULEnlTqm5QJ2eanNQ5BSMcSto5XEY05WcCnkHPXdTkdLUixsRABUBkiTZtRVlrmsClYykdslTpKs4kCSJli1b0rJlSyZNmkRYWBgrV65kzJgx6HQ6ZFm2q5+dO3fSo0cPnnvuOcAc0J0+fZo6depY6tjqr1GjRvzyyy+Eh4eTkZGBu7t1AFi1alW0Wi179+6lcuXKgPm8zOnTp2ndurWlnkajYeDAgSxatAidTkffvn2LJFDYtm0b3bp148MPP2TEiBG5rjdv3pzNmzdbpfdv2rTJYrKrKAq//fYbP/zwg1W7Y8eO0a5dOwYOHMiMGTOsjHxz+r07nf7OfgWC8o6cdJPUZd+T8sMijNdufeKr1SRFNOKhce/i8khLqyyu8qrUbJdOz7nRlhKTokLt2Q6N/zO3gh4fu++Vk6YuuD9EAFQB2LNnD5s3b6ZTp074+/uzZ88e4uPjqV27NgDh4eFs2LCBU6dO4ePjg4eHR5591ahRgxUrVrBr1y68vLyYPXs2sbGxVgFQeHg4e/bs4eLFi7i6uuLt7c3IkSP56quv6N+/Py+//DKhoaGcP3+epUuX8vXXX+Pm5sbAgQMZN24c3t7e+Pv7M3nyZFQqVa4U12HDhlnGvnPnzgLnf/bsWdLS0oiJiSEzM5ODBw8CUKdOHXQ6HVu3bqVbt26MGjWKp556ynKuR6fTWQ5Cjxo1ijZt2jBr1iy6du3K0qVL+e+//ywp7fv27SMjI4NWrW4fQDx69Cjt2rUjKiqKMWPGEBMTg8lksgSAAC+++CLz589n/PjxDBkyhC1btrB8+XLWrl1b4LwEgtIkP6VmMG9zJX/3FWmrVqBkmW0YVF7euPcbiFOf5ziy/yARjZvZTGEvj0rNduv0uDZG8h/C1v2OdGzRB41WWwKjE9ikyHPQHgAetDT448ePK1FRUYqfn5/i4OCgPPTQQ8qnn35quR4XF6d07NhRcXV1zZUGf+DAAau+EhMTlR49eiiurq6Kv7+/MmHCBGXAgAFKjx49LHVOnTqlPPLII4qTk5NVGvzp06eVnj17Kh4eHoqTk5NSq1YtZfTo0YrJZFIUxXYafNOmTZW33nor15weffRRmynxtmjTpk2u1Pw7x2UrdR9Q2rRpY9XP8uXLlYceekjR6XTKww8/rKxdu9ZybcKECcqzzz5rVd+WxACghIaGWn3/t27dqjRo0EDR6XRK1apVlUWLFuU7H5EGX755EOaf9sdvysXmEVap6RebRyipa1craRvWKtf697C6dqVrWyVl+Y+KnJmhKMqD8QzuRn/tf3alqRtif3og518YykoavKQoduZSVyBSUlLw8PAgOTk516HdrKwsLly4QJUqVXB0dCx03yaTyZIFdd9ngMohhZl/eno6ISEhzJo1i6FDh1rKFUWhRo0avPzyy4wZM6a4h2wX9erVY8KECVZp/bYoiu///b4HSxuDwcC6devo0qUL2gr41295n3+OUnO+YoUAajUuUd3wGDgch7tWesr7M8hBMSaZHdbjlmJK2gaYCmqCrt4mTC4tHoj53wsmk8LJ64mc2beTGpEtqRXsg0pVdEKW+X1+343YAhOUGQ4cOMDJkydp2rQpycnJTJs2DcBKVyc+Pp6lS5cSExNT5No/94per+epp57i8ccfL+2hCATFil1KzZIKjxdeweO5oWiCQ0pucCWEImcgJ/6OHL8M040NoNyRACJpQclLMV8ChxBUHq0wGQsOlB5EDlxKYNne86RlZNHRAz7fchxXZ0f6NKlKw7CStzERAZCgTPHxxx9z6tQpdDodkZGR7NixA1/f2z8Y/v7++Pr68uWXX9qVxl8S6HQ6Jk+eXNrDEAiKnay9u3N5dOVCMeHcut0DFfwoJj2mm5uQ45YhJ/4GpnTLNcn5YdT+fVH79UZJP2inTk/FC4AOXErgi+0nAevAIylDzxfbT/JCm1olHgSJAEhQZmjYsCH79u3Lt47YsRUISgdFlknf9IdddcuDUnNBYoU51+W4ZcgJv4LxhuWa5FgFtV9v1P59ULnUvd2pUxWh02MDk0lh2d7zltcKkCarrELE5XvPUz+0aLfDCkIEQAKBQCDIE1N2Fmm/LiP5q88wXDxfcAPKvlJzXmKF2mqzUDlWxhi3DDn+Z9DfsdqlC0Tt9wwavz5Ibk3yNGAVOj25OROXTFLG7a1CGYkdaV6o7lgJu5mh50xcMjUDPUtsXCIAEggEAkEu5OQkUn5YRMq3XyInxgOg8vBEMRpR0tNsNyovSs02xQqvYTjR17pM44na90nUfn1Reba2O4gROj2QlmXgVGwyp6KTOHgl8a6rEioUFKyDyJTMvM5PFQ8iABIIBAKBBeO1qyQvWkDK0u9RMsxnXTTBlfAY+hJuvZ8lc8c2cxYYlDul5vzFCnOQUPk9jca/LyqvTkiq/AxIH0xMJoUzccmkZBpwd9JSw9+jwK2pLIPM2bhkTkabg56rN9PzfMoqTHRwv8mWFC+MdwRB7k4lmxEnAiCBQCAQoD95nKSv5pP2269gNAKgq/UwHiNewbVrT6Rb6drlVakZQL6xyQ6xQgVN0IgKu4KTk6l155aVp7MuV6aWUTZxISGVk9FJnIpJ5kJCKrLJOuQJ9nSmZqAHNQM8+OnfcyTfWuFRAeq74ikvZx01/PMW4S0ORAAkEAgEFRRFUcj652+SvvyMzO1/Wsodmz+K5wuv4vToY+VeqVlRZExJ25Fjvzef67GnjT66mEdVNrkzU+tOcjK1nmoUjiLBqehkzsYlk31XOr+3iwO1gjypFehBzSBPPJx0lmsK2Ow7h95NqpboAWgQAZBAIBA8kORnVaHIMukbfif5i0/JPnLQ3EClwuXx7ngOfwWHeg0L7F9Sq3F6pFWB9UoLU8YJ5NgfkGN/QtFfLVRbSRdUTKMqu9ydqWWLX/ZftHrt5qg1r/AEelIryBNfV4c8D4c3DPPlhTa1LDpAOXg56+gtdIAEAoFAUBSkr//d5haVz1tTMKUkkfTN/zBeugCA5OCI2zP98Rj6EtqwKqU15CJBMSQgxy3HGPcDSup/ty9oPG+lrfdDf/xZMERj+xzQbbHCisbdmVp5UcXXjchwX2oFeRLs6Ywqj4DHFg3DfKkf6mNRgn65XZ0iV4IuDBXPi0GQi0GDBtGzZ88i669t27ZWrumlzWuvvUZkZCQODg40aNAg1/VTp07x2GOPERAQgKOjI1WrVmXChAkYDNYZCT///DO1atXC0dGRiIiIXC7uOTz22GN8/fXXJCYm0rlzZ4KDg3FwcCA0NJRXX32VlJQUq/rbtm2jUaNGODg4UL16db799tuimrqgApJjVXG3YKEcc5240SNImDQe46ULqDy98Hx1LJX/PojvtI/KXPCjKDJy0naMcUuRk7ajKLLteqZs5IRVZB97mqx/wjCcG30r+FGj8u6KrvZPOD5yGV2N+ag9WqKrMedWy7s/dO8WK6wYxKdmsuXEdZb/a5/EQbvawXSoE0IlL5dCBT85qFQSNQLMZ31qBBR8uLo4EStAArsxGAzl1rdmyJAh7Nmzh8OHD+e6ptVqGTBgAI0aNcLT05NDhw4xfPhwTCYT77//PgC7du2iX79+fPDBB3Tr1o0lS5bQs2dP9u/fT926t4XQbty4wc6dO1m6dCkqlYoePXrw3nvv4efnx9mzZxk5ciSxsbEsX74cgAsXLtC1a1defPFFfvzxRzZv3sywYcMICgoiKiqqZB6O4IHBLqsKtRrvd6bh3uc5VM4uJTe4QpCXTo+u+mzUvk+iKApK6n8YY79Hjl9uLVLo2hBNwHOo/fog6fxz9a32fbJCixUaZRNn41I4cvUGR6/dJDYls1DtSzpTqzgRK0AVhBUrVhAREYGTkxM+Pj506NCB9PR0pkyZwuLFi1m9ejWSJCFJEtu2bePixYtIksSyZcto06YNjo6O/PjjjyQmJtKvXz9CQkJwdnYmIiKCn376yXKfQYMGsX37dubNm2fp7+LFiwAcPXqULl26UKlSJYKCgnj++edJSEiwtE1NTeXZZ5/FxcWFoKAg5syZY7WaNG3aNKtgI4cGDRowceLEPOf+ySefMHLkSKpWrWrzetWqVRk8eDD169cnLCyMJ554gmeffZYdO3ZY6sybN4/OnTszbtw4ateuzfTp02nUqBHz58+36mvt2rU0atSIgIAAvLy8eOmll2jcuDFhYWG0b9+el156id27d1vqL1iwgCpVqjBr1ixq167NK6+8wtNPP82cOXMQCAqLXVYVsoxD7YfLdvBzvG/ubC39dfTH+6A/MYDs/yLIPtgSOXqBOfjRBaGpNAaHyP04NtqDJuRVm8FPDmrfJ3FsdhZdvU1oa32Hrt4mHJueKTfBj8mkcComib0X4jkVk4TJlL9CflJGNn+fiWHBthO8sWwPczcdZfOJ68SmZKKSJGoGevBko3DcHPMPbkojU6s4EStARYCiKCiZGXbVNZlMKJkZmDRquE83eMnJOc8DZ3cSHR1Nv379+Oijj3jyySdJTU1lx44dKIrC2LFjOXHiBCkpKSxatAgAb29vrl83/xJ96623mDVrFg0bNsTR0ZGsrCwiIyN58803cXd3Z+3atTz//PNUq1aNpk2bMm/ePE6fPk3dunUtZqZ+fn4kJSXRrl07hg4dyrRp01Cr1bz99tv07t2bLVu2ADBmzBh27tzJmjVrCAgIYNKkSezfv9+ybTVkyBCmTp3K3r17adKkCWA2UD18+DC//vrrfT3LOzl79izr16+nV69elrLdu3fncp6Piopi1apVVmVr1qyxMm+9k+vXr7Ny5Upatmxp1W+HDh1y9VuWthAF5Yfsg/lbyeRQVq0q8tfpMZfJ8UvNL1VOqH16oA54HpVXu0JvW5VXsUJ70tRNJoWLiakcuXqTo9ducOVGulUf7o5a6oZ48XAlb+oEeeKkM4cC/m6OZS5TqzgRAVARoGRmcLFuWKHa3CyC+4YfvYRkx19x0dHRGI1GevXqRViYeZwRERGW605OTmRnZxMYGJir7ejRo60CAYCxY8da/v/qq6+yYcMGli9fTtOmTfHw8ECn0+Hs7GzV3/z582nYsCEzZswgJSUFd3d3Fi5cSGhoKKdPnyYoKIjFixezZMkS2rdvD8CiRYsIDg629FGpUiWioqJYtGiRJQBatGgRbdq0yXN1pzC0aNGC/fv3k52dzYgRIywBHEBMTAwBAdby/gEBAcTExFheZ2dns379eqZMmWJVr1+/fqxevZrMzEy6devGJ598UmC/KSkpZGZm4uTkdN/zEjz4ZB3cR9Jns8nYvMGu+mXVqsKU/LcdOj2grvQG2spvI2ncS2BUZYeC0tTb1w4mNcvAses3Sc82Wq5LQJivKxEh3tSt5E2ot+3zO3dmat0ZYJVmplZxIgKgCkD9+vVp3749ERERREVF0alTJ55++mm73NQbN25s9VqWZd5//32WL1/OtWvX0Ov1ZGdn4+zsnG8/hw4dYuvWrbi75/6Fde7cOTIzMzEYDDRt2tRS7uHhQc2aNa3qDh8+nCFDhjB79mxUKhVLliwpsu2iZcuWkZqayqFDhxg3bhwff/wx48ePt7v9li1b8Pf35+GHH7YqnzNnDpMnT+b06dO8/fbbvPvuu3z11VdFMmZBxcWi4fPZHDJ3/WUulCQkBweUrCzbjcq4VYUp87Rd9VSu9Stc8GNPmvrmE7e3P511auoEe1E3xIs6wV6436HJkx85mVqFVYIuj4gAqAiQnJwJP3rJrromk4nU1FTc3NxQFcEWmD2o1Wo2bdrErl272LhxI59++invvvsue/bsoUqV/DM/XFysV5hmzpzJvHnzmDt3LhEREbi4uDB69Gj0+vzTJ9PS0ujevTsffPABaWlpuLq6WuYfFBTE2bNn7ZpL9+7dcXBwYOXKleh0OgwGA08//bRdbQsiNDQUgDp16iDLMiNGjOCNN95ArVYTGBhIbKz1tkFsbKzVKteaNWt44okncvUbGBhIYGAgtWrVwtPTkzZt2jBt2jRCQkLy7Nfd3V2s/ghsoigKmVs3cfPzOWTv32su1Ghw7fEMni+9huH0qXJlVaEoCqbkHcjRXyMn/GJXm4qo02NvmnrjcF/a1Ayiqp876nsMWlQqqURNSUsLEQAVAZIk2bUVBYDJhGSUUTm73HcAVBgkSaJly5a0bNmSSZMmERYWxsqVKxkzZgw6nQ5Ztp1iejc7d+6kR48ePPfcc4A5oDt9+jR16tSx1LHVX6NGjfjll18IDw8nIyMDd3d3q/lXrVoVrVbL3r17qVy5MgDJycmcPn2a1q1bW+ppNBoGDhzIokWL0Ol09O3bt1gCBZPJhMFgwGQyoVarad68OZs3b7Y6m7Np0yaaNzf/Ja0oCr/99hs//PBDgf2CebsMoHnz5rnS6e/sVyDIIUe8MOnzueiPHwFA0jng1vtZPF54FW2IOYDXVa1RLqwqtFIKpuvzyI5bhJJ55vYFSQtKXqaYFU+nRzaZOBWTzIaj9ok51g/1saSZC/JHBEAVgD179rB582Y6deqEv78/e/bsIT4+ntq1awMQHh7Ohg0bOHXqFD4+Pnh45P3DU6NGDVasWMGuXbvw8vJi9uzZxMbGWgVA4eHh7Nmzh4sXL+Lq6oq3tzcjR47kq6++on///rz88suEhoZy/vx5li5dytdff42bmxsDBw5k3LhxeHt74+/vz+TJk1GpVLkOeg8bNswy9p07dxY4/7Nnz5KWlkZMTAyZmZkcPHgQMK/06HQ6fvzxR7RaLRERETg4OPDff//x9ttv06dPH0va/6hRo2jTpg2zZs2ia9euLF26lP/++48vv/wSgH379pGRkUGrVrd/Ma9bt47Y2FiaNGmCq6srx44dY9y4cTRr1ozw8HAAXnzxRebPn8/48eMZMmQIW7ZsYfny5axdu7bAeQkqBorBQNqaX0j631wM580rpZKzC+7PDsJj6Eto/HOf3SurVhXm1Z7tyNe+pI3HKkyXbp1TUbmg9u+LJmgYpqxLGE70y2lxR+uKo9OjN8ocv57EwcuJHL6aSIbevj9Q4cFKUy9uRABUAXB3d+evv/5i7ty5pKSkEBYWxqxZs3j88ccB87mabdu20bhxY9LS0ti6davlA/puJkyYwPnz54mKisLZ2ZkRI0bQs2dPkpOTLXXGjh3LwIEDqVOnDpmZmVy4cIHw8HB27tzJ+PHj6dWrF3q9nrCwMDp37mxZCZo9ezYvvvgi3bp1w93dnfHjx3PlyhUcHR2txlCjRg1atGjBjRs3aNasWYHzHzZsGNu3b7e8btjQLPOfMy6NRsOHH37I6dOnURSFsLAwXnnlFV5//XVLmxYtWrBkyRImTJjAO++8Q40aNVi1apUlLX/16tV06dIFjeb2j5STkxNfffUVr7/+OtnZ2YSGhvLkk0/y8ssvW+pUqVKFtWvX8vrrrzNv3jwqVarE119/LTSAKgj52VWYsrNI+3kJSV/Ox3j1MgAqdw/cBw7HY9AI1F7e+fZdlqwqFH2cWbMn5huUTHMQp5IAl4Zog4ebNXs0buZyt0gkqeLp9GQZjBy9epP9lxM5du2Glc+Wm6OW+pW8OXAl0epw8908aGnqxY2kKPkpZlVMUlJS8PDwIDk5Odeh3aysLC5cuECVKlVyfTDbg8lksmRBleQWWFmhMPNPT08nJCSEWbNmMXToUEu5oijUqFGDl19+OVdqemlRr149JkyYQO/evfOtVxTf//t9D5Y2BoOBdevW0aVLl3IrrHk/5My/rU5F0vR3c21TeY+fhJwQS/LXn1vS1dU+fngMfQn3ZwejcnMrraFboSgypuS/UfTRSLogVB6trFZmFMWEKWkbcszXyAmrb29rqV2RfPuw60wNHo16Nc/3QEH9l2VMJiXfQ8Q574E27TtxPCaFg5cTOX79JsY79Hy8nB1oGOZDw8o+VPNzR6WS8swCy+GFNrXKRaZWcf4OyO/z+27ECpCgzHDgwAFOnjxJ06ZNSU5OtqSh36mrEx8fz9KlS4mJiWHw4MGlNVQr9Ho9Tz31lGVFTSCwh7g3XkadZa3CK8dcJ37Mi5bX6qBgPEe8iluf51A5lp1D8fkpNavcW2CM/Q45eiFK1jnLZcmtMZrAYaj9e2M0OZB60raVjKX+A6rTk5ypZ/+FOP5Nd2PDyn3cqWHo5+ZIo8q+NAzzIczHNdf2f0VLUy9uRAAkKFN8/PHHnDp1Cp1OR2RkJDt27MDX9/YPtb+/P76+vnz55Zd2pfGXBDqdjsmTJ5f2MATlBCUnQaAAuwrf6TNx69UXSWdf+nJJYVFqvlusUH8N/fE+gBq4NUe1G2r//miChqByvcNh3pTXIefyTUE6PYHuTsSmZN56cubva4iXMw0r+9Kwsg/BngWL21akNPXipkwEQJ999hkzZ84kJiaG+vXr8+mnn1rpwdzJt99+m+svfwcHB7Lu0L0YNGgQixcvtqoTFRXF+vXri37wgiKjYcOG7NuXv5Kt2LEVlHey9/9r/k9+72VZRhtetcwFP/krNecgI7k1RRM0HLXf00jqsmm5UdTYo9MTc8t3K8zHBcf0OHp3aEGId+G3NCtKmnpxU+oB0LJlyxgzZgwLFiygWbNmzJ07l6ioKE6dOoW/v20vF3d3d06dOmV5bSti7ty5s8XaAcxBkkAgEJQ2hnNnCdqyCZU+O996ZdGuwl6lZm2VGeVy++p+sFenZ1jrh6gf4sW6devwdyt/Z/geJEo9AJo9ezbDhw+3rOosWLCAtWvXsnDhQt566y2bbSRJsmnbcCcODg4F1skhOzvbossC5kNUYD6oZTBYL9UajUYURUGWZYumS2HIWcFQFOWe2pd3xPzvf/6yLKMoCkajMdf7szyQM+byOPb7QY6PI+Xrz0j78Vt8DeYPSkWSMGk0IKksQoU5KL5+ZeoZKaZs5JgVKIqEJN1eAVIUCRMaFNTkpKqTEY3GJe+xP0jvgYS0LA5evsHfZ+PuuqIgAZLlXzOyUX6g5n8vFOf8C9NnqWaB6fV6nJ2dWbFiBT179rSUDxw4kKSkJFavXp2rzbfffsuwYcMICQnBZDLRqFEj3n//fSv7gUGDBrFq1Sp0Oh1eXl60a9eO9957Dx8fH5vjmDJlClOnTs1VvmTJklwWD5IkERQURGBgIG5lJBtDULFITU0lJiaG6OhosSVYDtCkJOO35Q+8d21DdeuXc0ZYVWI79yCt5sO5Ap+yhoOUSCWHTVRy+BMHlVnuQla0xOhbcDn7cVLlaqU8wpIn06Qi2qAjxuBAsnznOoKCj8ZAkFZPgEaPTiV+PkuajIwM+vfvb1cWWKkGQNevXyckJIRdu3ZZKd+OHz+e7du3s2fPnlxtdu/ezZkzZ6hXrx7Jycl8/PHH/PXXXxw7doxKlSoBsHTpUpydnalSpQrnzp3jnXfewdXVld27d6O2IQRmawUoNDSUhIQEmw8wNjaWlJQU/Pz8cHa2z5E9B0VRSE9Px8XFpVDtHhTE/O99/oqikJGRQXx8PO7u7rlMVMsLBoOBTZs20bFjxwc6DV6OiyXl689IX/o9Srb5jKKuQSQuL73OX+lZ1Jw6DnV2lk27Cv9Zn+PcoXNpDBu4tVKZuhtTzAKUG6tBuaU9owtBNmagyHl4jSGBLgiHyAP5pqyXx/fAzfRsDly5wYHLN7iYmGYplySo4e9Og0rebDp+hdTMvFcgPJ11TOzeCFk2lrv5FyXF+f1PSUnB19f3wUyDb968uVWw1KJFC2rXrs0XX3zB9OnTAejbt6/lekREBPXq1aNatWps27bN4jR+Jw4ODjbPCGm1WpvfnJCQENRqNQkJCYUev6IoFpfvihoAiPnf3/y9vLwIDAws988vr5+v8o4xLoakLz4ldcliS+Dj0LAxXqPfxKlVW4xGI6xbR9D7s3PrAAWFlKpdhSJnIscvR742HyX9kKVc5d4KTchIVL49MCX+disLDGwqNdd4H7XOvrMtpfkeKEirB+BmRjb7LyWw72IC5+NTLeUSUD3AncgwPxqF+ViMRr1cHfPV6XmqSXUcHHQYDOb7PKg/A/ZSHPMvTH+lGgD5+vqiVqsLNJnMD61WS8OGDfM106xatSq+vr6cPXvWZgBUWHK2wfz9/Qu9h2kwGPjrr79o3bp1hXzji/nf3/y1Wq3NVUxB6WOMiyFpwaek/nRH4NOoCV6jxuPUqm2ugNW5Q2fcO3UpE3YVpqzLyNFfYIxeCMZEc6HKEbV/PzTBL6NyrW+pq/Z9El2d8q3UnJ9WT1U/d/ZfNgc95+JSLCGeBFTzdycy3JdGlX3xcM6doSd0esoXpRoA5Wi9bN682XIGyGQysXnzZl555RW7+pBlmSNHjtClS5c861y9epXExESCgorWQVitVhf6w0itVmM0GnF0dKyQAYCYf8We/4NI3oHPmzi1apPvSl1x2lUUrNSsYEr+C+P1zzAlrAHMh/Ilh8qog19EEzgYSWv73KTa90kcfZ4ol0rNBWn13E1VPzdz0BPmi5dzwdnEQqen/FDqW2Bjxoxh4MCBNG7cmKZNmzJ37lzS09MtWWEDBgwgJCSEDz74AIBp06bxyCOPUL16dZKSkpg5cyaXLl1i2LBhAKSlpTF16lSeeuopAgMDOXfuHOPHj6d69erCX0kgEBSK/Ly67ifwKW7yVWr2ikKOW4Lx+uco6Uctl1UebdGEvIzKpxuSVPBHQ3lUarZHqwegiu/toMfbpfASKkKnJ29kWWbXnsMA7NpzmFbNG5TaqnapB0B9+vQhPj6eSZMmERMTQ4MGDVi/fr3lgOfly5etPJNu3rzJ8OHDiYmJwcvLi8jISHbt2mVxI1er1Rw+fJjFixeTlJREcHAwnTp1Yvr06UILSCAQ2E36+t9JmPZOLq8ur9fGoT99wnzG55aWj0NkU7xeG1/qgQ/YodSscgFTurlM5Yw64Fk0wS+hcqlb4mMtaY5fv2mXVk/PRmEigCkGVq/bzvhJ87hxM5mvZ7/G0wPH4+3lwUfTRtGjS8kH06UeAAG88soreW55bdu2zer1nDlzmDNnTp59OTk5sWHDhqIcnkAgqGCkr/+d2JGDc6k1yzHXSXjndctrh8im5hWflq1LPfABO5WaTelIjlVQB7+EJmAgkrZsWMoUF7LJxPHrSey9EM/+S/YlrqTkk8kluDdWr9vOcyMmoCjg5Hj7/NT1mHieGzGBH758r8SDoDIRAAkEAkFZQZFlEqa9k79VhVZH4Fc/4PToY2Ui8MnBXqVmTY3/ofFqVwIjKh0UReF8fCr/Xohn38V40rKNhWrv7iTO5xUlsiwzftI8y4+U0Sjz4y/bkGUTimKWEnhz8id0i2pVotthIgASCASCO8jau9tq28smBj2STlemgh8AU2bB51sAMNytWvxgcD0pg38vxLH3QjyJabe13dwctUSG+dIk3I8v/zpBcj4rPF7OOmr4e5TEcMsssiyzc89hYuISCfT3oWWzeoUKTAwGI2fOX+H4yfMcO3meHbsPcC06/vZ1o8y6zf+hUZuPtygKXL0ex849h2ndomFe3RY5IgASCASCOzBcvGBXvbLk1aXoYzBe+wzj9c/sqi/pijYjtjiwR6cH4EZ6Nv9diOffC/FcvZluKXfQqGlQ2ZumVfypFeSJ+lbbvk2r5avV07tJ1QqdsZVzTufOgCUkyM/mOR2TycTFy9EcP3We4ycvmP89dYEz5y5jMOS96qZSSXRs3ZCtOw+DfNsSKCYusegnlA8iABIIBALAlJ5G8uKvSfo87zOGd6L2L30lblPGKYxX5yLHfg9KzuFeDZDXh48EDiGoPIon9b6oyE+np2GYL+nZBvZfSuTfC3Gcjb2t1aOSJOqGeNG0ih/1Qr3RaXKvWgitnry585zOnVyLjufZ4RN4c9RAPNxdLYHOydMXyci0rQru7uZCnZpVqF2zKg4OWhYs/MVyzUGnZUDvdvz1z1G4YzEu0N+27EJxIQIggUBQoTFlZ5G6ZDFJn89FTrz1V69GA8Y8gghJQh0YjGOT5ravlwByyj8Yr8zClLiGnAPPklsztKFvoCgyhhP9b9W0odRcbVaZ1uspSKcnzMeVqzfTkU2351YjwJ0mVfxoVNkXV8eCz+8IrZ7c3H1OxxYfzlucq8zBQUetGmHUqVmVOrWq3Pq3KpWC/S1bxLIs89sff3E9Jt5m/5IEIUH+tGxWr6imYxciABIIBBUSxWAg9ZefuPnpx8jR5jM/msrheI0ej6RzJO7Vobcq5vbq8p04o8QVmxXFhOnGOnPgk7LTUq7y7oomdCwq9xaWDxxJKp9Kzfbo9Fy65cMV4uVM0yr+NAn3xdvVPuuNOxFaPbe5ePk6Xy1eZbXtlRetHmlA65aNeLhWVerUrEKVsGA0mvxDCbVazUfTRvHciAm5vH9zXn849bUS1wMSAZBAIKhQKLJM2m+/cnPeRxgvmc/7qAOD8Hp1LG5P90e6pdAtqRbZ1AEqaa8uxZSNHPcTxquzUTJurYxIWtT+z6KpNBqVS51cbcqrUvOZuGS7dHqeb16dljXss0sS5Oba9Tj+2rWfv3YdYPvO/Vy+GmN32yHP96B3zw6FvmePLm344cv3LDpAOYQE+fPh1Ncqrg6QQCAQFDeKopCxcR035nyA4bQ5kFD5+OL10mjcnh2EysF6FcGlczecOz5erF5d+dlVKMZkjNFfYbz2KeijzQ3U7miChqMJeQXJISTfvsubUnNaloHdZ+3LTrN1tqciUdgsrbiEm+y4Fezs2LWfM+evWF3XaNQ8VC2M46cKziK8n3M6Pbq0oVtUK/7efZCkxKusWPxRxVaCFggEguJEURQyd2zl5qz3yT5yEACVmzseI17BY9AIVC6uebYtTq8uOfF3jBdz21VowyagZJ7BGP0VyLccyHXBaEJeRRM0DEnz4KRoyyYTJ64ksvtcHIev3rA615MfFVmnx54srZtJqfz9zwHLCs/xk9aBjUqlomG9mrRp2YjWLRrySJMInBwdqNPsmWI/p6NWq2nRrB7r1l2lRSHT64saEQAJBIJyS35eXQCZ/+7m5qwZZO39BwDJ2QWPQSPwGD4StYdnKY3ajOHUYDRShnWh/hqGMy9ZXkrOtdFUegO1f18kVW738fLKtZsZnMh05u9VB0i9Q6Qw1NuFhNQsMg1ynm0rsk5PQVlaXTu14npMPAePnEa5q1JEneq0btGQNi0jaflIfTzccwf+d57TsXH0rVTO6RQnIgASCATlkry8unwnvY8mOIQbsz8g868tAEg6B9yeHYTXS6NR+/qV1pAB87bXrf/lXUnSoa39E2qfrkiSKu965Yi0LAP/Xohn97lYrtxIB5wAI26OWppV9eORagFU8nLJMwssh4qq02NPltbajX9b/v9Q9TDatGxEm5aNaNW8Ab7engXe485zOtYrTKV3Tqc4EQGQQCAod+Tn1RX78qDbBRoNbs/0x+uVsWiCgkt2kHlgSvkHUJDIe5UDRY+kcS/TwY89QoWyycTRazfZfS6OI3dscalVEr6qLHq0iKB+ZV/UdxheC50e26xau92uLK1xrw3ghUFPEhhwb88p55zO/ShBlxdEACQQCMoVdnl1AS49nsZ79Jtow6qU0MgKRlFMKDfW0sztN9RS/tlOSs7B5zJIQUKFV2+ms/tsLP9eiCc167bSXWUfV5pX86dhJU+2b95ERIiXVfCTg9DpAb3ewO69R9i09R82bt2T6xxPXtSuWeWeg58c1Gp1iVpSlBYiABIIBOUKu7y6APc+z5WZ4EdRZOT4FRgv/x9kHMNDg8UEMi/Kql1FQUKFvq4OJNzhw+XuqKVpVX+aV/MnxMsFAIOhYLf18qzTc69eWlevxbJx6x42bv2HbTv+Iy0903JNJUmYCgj6oeTVlMszIgASCATlCns9uMqCV5diMpg1fK78H0rmWXOh2o3zaR2o7LgeDZk2WpVduwp7hAoT0rJRqyTqVfKmefUAHg72tLnK86BSGC8tvd7Arn/zXuXx8/WiY9tmdGr3CG1aNaJV1NAyp6ZcnhEBkEAgKDcoBgNZh/bbVbc0vboUUxZyzGKMVz5Gyb5kLtR4owl5FcV/OGc37qay4wbM9hTlx67CXqHC4a1r0qByxTurk1eW1vWYeJ4bMYEfvnyPyPq1+OPPXfy4bA0vjPvMepVHpaJpozp0fOwROrV7hPp1a6C6I3isaFlaxY0IgAQCQZnHImL40TQMF87lX7kUvboUOR05+msMV2ffFi/U+qOp9DqaoBFIGjfL9o+25iKUu3WAyrBdhUE2sf+SfW7dBtk+PZ8HifyytHLKBr40GaPR+vD7nas87Vo3wdvLPc97VLQsreJGBEACgaBMk/XfHhI/nEr2vn8Bs3qzS/vOpC7/gbz+FC5pry7FmILx+v8wXpsHhgTzUHSV0ISORR04GEntlKuN2qcbmoCyb1dx7WY6f5+JYc/5eDL0ebnMW1MRhQp37jlcYJaW0SijkiQaN6pD5WBPRo54nsgGta1WeQqiImVpFTciABIIBGUS/fkz3PjoPTI2rgVAcnTCY9jLeA5/BZWbG85tOxS7V1d+VhUAiiER47X5GK9/BsakW+OsiiZ0POqA5woULyyrdhVZBpl9F+P5+0wsFxJSLeVezjoyDTJZQqgwF6fOXrKr3twPx/F8786sW7eOBhEPFSr4yaGiZGkVNyIAEggEZQpjfCw3580kddn3IMugUpm1fEa/iSbgdmZUcXt1yQkrczuq60LQVZ+Nyr05xqtzMV7/AkzpAEhONdFUfgu1fx8kqfz9alUUhcuJafx9Jpa9F+MtQY5Kkqgf6k2rGoHUDvLk0JVEIVR4i+vR8az+Yzur121n1z+H7GpTvUqlYh6VwF7K30+pQCB4IDGlp5H89eckffUZSoY5qHBuH4X3+EnoatS02aa4vLrkhJXoj/cll1qz/hr6431A0oJiPssjudRDW/ltVL5PlinhQnuECgEy9Ub2nI9n55kYrtxMt5T7uTnSqkYgj1Tzx8Pp9kpWRRcqvHQlmtVrzUHPnn1Hra5ptRoMBtvbhHdmaZlMppIYqqAARAAkEAhKFcVgIHX5D9ycNxM5wewG7lCvId5vT8GpWcuSH48im1d+8rOqUAxIbk3QVn4HlXcXpPwEfUqBgoQKFUXhXFwKf5+NZd/FBAyy+QNZo5JoGOZLqxoBPBTgkee8HgShwsJo9Zw5d5nV68xBz4HDp6yuNW8SQY8ubXiiSxsOHD7FcyMmAPlnaYkAqGwgAiCBQFBs2DIrtVxTFNJzMrvOmzVyNGFV8B43AZfHnyi1oMKU/Lf1tlceaMJnoPZqW+zjKSwFCRU2r+rPhcRUYpJvp18HezrTskYAzar44+po3wHm8ixUWJBWj6IonDh9kVVrt7F63TaOnbitz6NSqWj1SAN6dG3DE51bExR4e8WrcqVAkaVVjhABkEAgKBbyMiv1nDgD5wtnievXA/2BvQCovH3wem0c7n0HIOlK1/XcbgsKQ0zxDuQesEeocPd58yqbTqOicbgfrWoEUMXXrcytYhUXBTmq9+jShuOnLnDm3GXLNY1GTdtWkfTo0oauUY/i7+uVZ/8iS6v8IAIggUBQ5ORnVprw6lCqmUzouZXZNfQlPEe8isrNrXQGewemrEvIcUvtqlsWrSrsFSpsXzuYbvUr46SrWB8B9jiqr163HQCdTkuHNk3p0aUNXTq1wsvT/venyNIqH1Ssd79AICh2CjIrlUwmFEnC9am++Ix5B01g6QcSSvZVDJc/RI5ZaDncnDdl16oiJbNgjy2AcF+3Chf8gH1aPQDjRw1k9Ev9cHdzKYFRCUqLivcTIBAIipWCzEoVlYozY6fQsl7dUg9+lOxoDFc+Qo7+ChTzyonKsx0qzzYYL07JqXVHi7JpVSGbFA5fSWTD0at21a+IQoXHT13g829+tqturYfCRfBTARABkEAgKFIKMiE1aXVkB4Ugxxf8l3hxoehjMVz5GDn6CzBlAaDyeBRN2GTUnq3Nr51r5dYBKmNWFWlZBnaejWX7qWhupGcX3ICKJVR4/uI1flmzmZ9Xb85lNJofwlG9YiACIIFAUKSYMjPsqqf28yvmkeRGMSRgvDIL4/X/gck8TpV7czRhU1B5trU6CKz2fRJHn7JpVXH1ZjpbT1zn3wvxlhR2FwcNjz4UiI+zAz/uydsv7UEXKrweHc+vv21hxZrN/HfghKVcq9XQsW0zdu89zM2kVJtthaN6xUIEQAKBoEiQExO4Mef/SF36Xf4VbwUZDo2alsCozCiGGxivzjFbVshp5mG4NUEbNhmVV8c8M6DKklVFzjbXlpPXORObYikP9XbhsVrBNKnih1ZtFmJ0ddSWe6HCwuj0xCfeZPXa7axYs5md/xxCuXX+TKVS0bZVJM/0bE+3qNZ4ebpZssBAOKpXdEQAJBAI7gvFYCDlh4XcnPcRppRkwBzcZO//N0+zUqBILCsK9OoyJmG8Og/jtU9BNgcNkmtDc+Dj/Xipp37bo9acs8217WQ0NzPM21wqCRpW9uWxWkFU83fPNY/yLlRYkE4PQHJKGr+v38GKNZvZ8td/yPJtf7LmTSJ4umcHenZtS4Cft1XfwlFdkMM9BUCbN29m8+bNxMXF5VK0XLhwYZEMTCAQlH0ytm8m8b0JGM6dAUBXJwKfSTNwatoiTx0gnwnvcVx//0q4+Xp1ebY3m5Rem3vbpNQlwhz4+HQv9cAH4PCVRH7efzlPtearN9LYejLaapvL1UHDow8F0fqhQLxcHPLtv7wKFeal03M9xqzT89oLfblw+Tobt/xDdvbtZ9cg4iGe6dmBXt3bERoSkO89hFaPAO4hAJo6dSrTpk2jcePGBAUFlYlfJAKBoGTRnz/LjRkTydi6CTALGXqPfRe3Z561rOzkZVZqNJlg3br7un+BXl1q19tbXc510IZNQuXbs0x5dS36+zRGrMeTo9Yc5OFE9B1Kzba2uR5E8tPpySn75IvbOk0PVQ/jmZ7tefqJ9tSoVrlQ9xJaPYJCB0ALFizg22+/5fnnny+O8QgEgjKMKSWFm/M/JnnxV2AwgEaDx8DheL46FrV77swim2al9+mDZJdXl5xmdmcPm4ja7+kyFfiYTPmM+xbRyZm3t7lqB1PNr2IoNdur0/NMzw6MeflZ6tapViGei6B4KHQApNfradGiRXGMRSAQlFEUWSZ1xRJufDwDU2ICAE5tO+AzYTq6qjVKdCx2e3VVn4fGq10JjKhwnItPKbgSMOTRmjQOL/lMudLkwJFTBVcCHu/YkoiHqxfzaAQPOoUOgIYNG8aSJUuYOHFicYxHIBCUMTL/3U3i9HfQHzsCgLZqdXzenY7zYx1LZTz2e3XFFe9A7pHULAM3jRpk8l+5yM+u4UEi4UYSK1Zv5qcVG9h38ETBDRA6PYKiodABUFZWFl9++SV//vkn9erVQ6u1VhSdPXt2oQfx2WefMXPmTGJiYqhfvz6ffvopTZvaTpH99ttvGTx4sFWZg4MDWVlZlteKojB58mS++uorkpKSaNmyJf/73/+oUaNk/1IVCMoDthzbJbUa47WrJH44hfTfVwGgcnPH87VxeDw/tNQMSxVFQcm6XHBFyp5Xl6IoHL12kw3HrnM9vWAhwgdZrTkrS8+e/af4/ted/LntX4xGcwaXWq1Co9FYHW6+E6HTIyhKCh0AHT58mAYNGgBw9OhRq2v3she7bNkyxowZw4IFC2jWrBlz584lKiqKU6dO4e/vb7ONu7s7p07dXiq9+74fffQRn3zyCYsXL6ZKlSpMnDiRqKgojh8/jqOjY6HHKBA8qNjK1FIFBOIU2YyMzRtQsrNAknDr+zzer7+N2rf0tmRMKXswXHgHU/KOAmqWLa8u2WRi74UENh67yvUks/iidOv8kpLHKtCDqNasKAq7/j3MT79s4Nc1W0hJTbdcaxDxEP2e7szTPdrzz94jQqdHUCIUKgCSZZmpU6cSERGBl5dXkQxg9uzZDB8+3LKqs2DBAtauXcvChQt56623bLaRJInAwECb1xRFYe7cuUyYMIEePXoA8N133xEQEMCqVavo27dvrjbZ2dlkZ9+WkU9JMe/RGwwGDAb7zAXtJae/ou63vCDmX3bmn/HneuLeeNn8KePgCIpiNiqNjSV93WoAHJo8gue709HVrosJMBXBuAv7DJTMU5guT0G5scZcIDmAZyeMN/7E7M2V26tLGzYLo9EE3H+6/b2SbZTZfS6eLSejuXkr1d1Bo6J5VV+k6FPsSnXPcxvs6UaVkWUjd0jblDlkWWbPf8eITbhBgK83zRo/bDMwOXfhKstWbmL5yj+5dOX29qW3pxvP9elCv6ejqFUj3FLepWMLfvhiOhNn/I/o2ARLeXCgH9PeeZEuHVuUiZ+f+6Es/R4oDYpz/oXpU1KUwu00Ozo6cuLECapUqVLogd2NXq/H2dmZFStW0LNnT0v5wIEDSUpKYvXq1bnafPvttwwbNoyQkBBMJhONGjXi/fff5+GHHwbg/PnzVKtWjQMHDlhWqgDatGlDgwYNmDdvXq4+p0yZwtSpU3OVL1myBGdn5/uep0BQ1nG8cpHglT/hcuEsAHovH6Kf6E1K/Ugr8cKSxEFKpJrTckJ0W5EkBUWRuKZvy7nM3mQrZVfNWG+SuKR35JLeEYNizj7TSSbCdZlUdshGKz34h3tS0zL5Z99Jduw5zrmLt4MeRwctTRs+RKtmD1O7Rmi5EWYUlB8yMjLo378/ycnJuLu751u30FtgdevW5fz580USACUkJCDLMgEB1qJVAQEBnDx50mabmjVrsnDhQurVq0dycjIff/wxLVq04NixY1SqVImYmBhLH3f3mXPtbt5++23GjBljeZ2SkkJoaCidOnUq8AEWFoPBwKZNm+jYsWOu81MVATH/sjH/rL27iRna37zqYzQimWTLWoqi1qBOT6PS0kUEduyIY5PmRXrvgp6BYriB6foslOgFoJjP9kle3VFXnky4c23C76yryJhS/kHRxyDpAlG5P1JqXl030rPZcjKa3efi0d8SLvR1daB9rSCaVvFDpzEHQ3fOX63WcC4+hdQsA26OWqr5uZf5oGDdxp0MHzXdxiFtBdmkEFG7OoePn8VgMAJmO4p2rRvT58mOdOnUEmcnxzLzc1BaiPkX3/xzdnDsodAB0HvvvcfYsWOZPn06kZGRuLi4WF0v6oDhbpo3b07z5rd/Ibdo0YLatWvzxRdfMH369Hvq08HBAQeH3KqqWq222N6cxdl3eUDMv3TnnxUfhzo7K1e5BEiyEWTzh5eUEF9iPwOKnInx+nzkKzMt6s0q91ZoqsxA7ZFXEKYF37bFMj57uXYznY3HrrL3Qjw5Ej+h3i5EPVyJhmG+qPMIaHLmX6dS2V3NuhtZlhk/+RMyMm0fUgbYd8j8x2v9ujXo91QUz/TsQEAeWVul/XNQ2oj5F/38C9NfoQOgLl26APDEE09YHT5WFAVJkqz8WArC19cXtVpNbGysVXlsbGyeZ3zuRqvV0rBhQ86eNS/d57SLjY0lKOh2FkhsbKzVlphAUFExXLpA8sIFdtVV++dvKVAUKIoROWYxhkvTQW8+jC251EUb/l6p+3Xl59V1NjaZDceucuTqTUv9moEeRNWtRO0gzwdSoM9eocL/zX6b5/t0KYERCQT3TqEDoK1btxbZzXU6HZGRkWzevNlyBshkMrF582ZeeeUVu/qQZZkjR45YArMqVaoQGBjI5s2bLQFPSkoKe/bs4aWXXiqysQsE5Q1Fryfpq/kkzZ9tzu7KD0lCHRh839tftsxKb19TkBNWYrgwESXztPm2DmFowieh9u9faltZORy4lJDLUd3DScsjVf05E5fC+fhUwLxq1jDMh04PVyLc162URlv8ZGZms2rdNrvqOjiUjkyCQFAYCh0AtWlTtE65Y8aMYeDAgTRu3JimTZsyd+5c0tPTLVlhAwYMICQkhA8++ACAadOm8cgjj1C9enWSkpKYOXMmly5dYtiwYYA5Q2z06NG899571KhRw5IGHxwcbHXQWiCoSGT+u4uECWMxnDUHGk4tWuPcqQuJU982V7CRb+w7ccZ9ObbnZVYqhc/GS3MC+ehHyGl7zeUaH7SV30Yd/AKSKn+Tz5LgwKUEvtie+xxicqaBDcfM89GoJB6p5k/HhysR4O5U0kMsERRFYd/BE3y/bB0rVm8mOSXNrnZCqFBQHih0APTXX3/le71169aF6q9Pnz7Ex8czadIkYmJiaNCgAevXr7ccYr58+TIq1W0fn5s3bzJ8+HBiYmLw8vIiMjKSXbt2UadOHUud8ePHk56ezogRI0hKSqJVq1asX79eaAAJKhzyzRskfjCFtBVLAFD7+OH97jRcezyNJElo/ANtOrb7TpyBS+du937ffMxK5VP9aOJmgjRA5Yym0ig0lcYgacqG7o3JpLBs7/l86zhoVEx5IhIv19IP1oqD2PgbLP1lA98vW8fJ0xct5aEhASQlp5KalmGznRAqFJQnCh0AtW3bNlfZnXvdhTkDlMMrr7yS55bXtm3brF7PmTOHOXPm5NufJElMmzaNadOmFXosAsGDgKIopP26jMQPJmO6kQiAW78BeI+fhNrD01IvL8f2+1n5KcisVCWZMClq1IGDcagyCUln33m/kuJMXLLVtpctso0m4tIyH6gASK83sH7zbn5Yto4NW/6x/C53dNTRo0sbnuvdhTYtG/Hb+h1CqFDwQFDoAOjmzZtWrw0GAwcOHGDixInMmDGjyAYmEAjuDf25MyRMHEvWPzsB0D5UG78Zs3CMtG0vY9Ox/T4oyKzUpKjZmTKH1g/XKnPBT5bByI7TtuUy7iYls2yL2MmyzM49h4mJSyTQ34eWzerZDEyOHj/L98vWsfTXjSTeSLaUN230MM/16cJTT7TDw93VUt6jSxt++PI9xk+aZ3UgOiTInw+nvkaPLkV7TEIgKC4KHQB5eORepu7YsSM6nY4xY8awb9++IhmYQCAoHKasTJL+N5ekBZ+AwYDk6ITXqHF4DHkJqQRTbQsyKzWhI9MUhKK3L9AoCTL1RradiubPY9dI1xvtalOWvbpWr9tuI0Dx46Npo+jRpQ03bqawfNUmfli2joNHTlvqBPh70//pzjzb+3Erdea76dGlDd2iWtkVYAkEZZVCB0B5ERAQYOXPJRAISo6MHdtImDQO46ULADg/1hGfqR+irVS5RMdROLPS0l/9ydAb2XriOptPXCNDb97y8XdzJC3bYHlti7Ls1bV63XaeGzEhl1Dhteh4nh0+gWaRdTlw5BR6vXkFS6vV8HjHlgzo04UObZui0dj3saBWq2ndomFRD18gKDHuyQz1ThRFITo6mv/7v/8TOjsCQQljjI8l8b2JpP/2KwDqgEB8Jn2AS+duJa5DY0o/guHceExJmwuoaR6Xyv2R4h9UHqRnG9hy4jpbTlwn02AOdAI9nOgSEUrjcD8OXUm0mQWWQ+8mVcukYrMsy4yfNM+GSvNt9uwzm1hH1KnOc3260KdXR3y9PUtmgAJBGaLQAVCDBg2QJIm7LcQeeeQRFi5cWGQDEwgEZhRZznVIGUkidel33PhwGqbUFFCpcB8wDO/X30blVrJaNIo+FsPFqcgxCwETSDpU3lGYEn8jL7NSoFR0ftKyDGw+cZ2tJ6+TdSvwCfZ0pktEKI3CfC1BTcMwX15oUyuXDpCXs47eTarSMKxsqjfbK1T46UfjGfxs9xIYkUBQdil0AHThwgWr1yqVCj8/P5FiLhAUA+nrf8+Vpq7y8UPt7oHhlnGprm59/GbMwiGiQYmOTTFlYbz6CcYrH4JsFgVU+fZCW+V9VE5VbesAOYSgDZsFe0p0qKRmGfjz2DW2nYom22gOfEI8nelSvzINK/ugsrFa1jDMl/qhPnkqQZdF9h/Oe9XqTlxcHkzdIoGgMBQ6ANq+fTt9+vTJ5Z2l1+tZunQpAwYMKLLBCQQVmfT1vxM7cjB372eYEuMxJcYjOTriPX4S7s8Pva+09cJiVnBegfH8uyjZFwGQXCPRVpuJ+g6lZ7Xvkzj6PJFLCdpoNAHrimQs+VlVAKRk6tl07BrbT0ejN5oNSkO9XOhSP5T6obYDnztRqSRqBnoWyViLi6ysbFav287CH9ew859DdrURQoUCwT0EQIMHD6Zz5874+/tblaempjJ48GARAAkERYAiyyRMeydX8HMnkrtniQc/ppS9GM6Pw5Syy1ygC0FbZfot6wpVrvqSpEbteXdatKlIxmLLqsLTWUefJlWp6ufOhmNX2XE6BsMtZ/YwH1e61gslopL3A+HTdfLMRb798TeW/LyeG0lmB2y1WoVWoyEr27aOkRAqFAhuU+gAKMf09G6uXr1qM0VeIBAUnqy9u622vWxhiosha+/uItXwyfNeWVcwXpyAHPeTuUDljCb0DbOCs9ql2O9/N3lZVSRl6Pli+0nUkoR8K3is4utGl3qh1A3xKveBT16rPZWC/RnUvzsD+nZl74HjQqhQILADuwOghg0bIkkSkiTRvn17q1RJWZa5cOECnTt3LpZBCgQVDTkutkjr3SuKnIbxyscYr84BUyYAav/n0FaZjuQQUqz3zgt7rCpkRaGqnxvd6ld+IJzZT529xKIf1lit9qhUKh7v0IIhzz1Bh7ZNLUFNjyAhVCgQ2IPdAVCOkejBgweJiorC1fW2MqhOpyM8PJynnnqqyAcoEFQ0TOlppP220q66av+A+76fbcd2CTn2BwwXJ8ItYUOVeyu01Waicou873veD/ZYVQA80aAytYK8SmBE905+as32rPYEB/nZ7FcIFQoEBWN3ADR58mQAwsPD6dOnj8j6EgiKgcx/dxE/7lWMVy7lX1GSUAcGm1Pi7wObmVoaXySNK0rWRfOtHKuaM7t8nywTKyn2WlCkZtmn6FxarNu4k/GTP8ml1jz6pf5cuhJt12pPfgihQoEgfwp9BmjgwIEkJSXxww8/cO7cOcaNG4e3tzf79+8nICCAkJDSWRYXCMozpqxMbn48g+RFX4CioAkJxe3pftz8ZKa5go3DHL4TZ9zXAeg8HduNCSjGBFA5oQmbhCbkFSRV2TD9zNAbOXrthl11y7JVBcDwUdPJyLReyboWHc+4SfMsr+1Z7REIBPfGPSlBd+jQAQ8PDy5evMjw4cPx9vbm119/5fLly3z33XfFMU6B4IEl6+A+4seOxHDerOvj1vd5fN6ehsrNDV3NOrl0gNSBwfhOnIFL5273fM+CHNsB0HiiqTS6VAQL7ybLILPt5HU2Hruar0VFDmXZqiLHZT0/tWZHRx3fL5hGp3aPiG0rgaCYKHQA9PrrrzNo0CA++ugj3O5QnO3SpQv9+/cv0sEJBA8ySnY2Nz+ZSdIXn4DJhDogEL8P5uLctoOljkvnbjh3fDyXEvT9pr4X5NgOgD4aU/LfNtLYSw6DbOKv09GsP3KV1Czz1leQhzN1Q7zYdDzv8ZdVqwqAPf8d48z562Tr897Ky8rS4+LiLIIfgaAYKXQA9N9///Hll1/mKg8JCSEmpuy4OwsEZRn9iaPEvjkK/anjALj2fAafyR+g9vDMVVdSq4s81d2U+p9d9Qpydi8uZJOJXWfjWHf4MjdvHXj2dXWke4PKNAn3Q6WSqOrnVq6sKmRZ5rf1O5j8wRecu3C1wPoxcYklMCqBoOJS6ADIwcGBlJSUXOWnT5/Gz0/sUQsE+aEYDPhv/I3YTb+D0YjKxxe/6R/f13ZWoe4vp2G8NAPj1bl21Zd0QcU7oLswmRT2Xozn90OXiU/NAszihl3rVaZFdX/Uqttii+XFqiItPYPvl63j869/5sIl81amRqM2K2rLeYtCCrVmgaB4KXQA9MQTTzBt2jSWL18OgCRJXL58mTfffFOkwQsE+aA/c4rYN14m4Kg5pdk5qht+02ei9i3+PxwURcGUsBLDubEo+lurD5IjKFl5tJDAIeRWSnzxoygKB68k8tvBy1xPygDAzVFL57qVaF0zCK06t8o0lG2riuiYBBYsWsE3368mKTkNAG9Pdwb170a1UA/GTfsm1yFoEGrNAkFJUegAaNasWTz99NP4+/uTmZlJmzZtiImJoXnz5syYMaM4xigQlGsUWSZ54f+4OesDFH02spMzftNn4vFk7xJJKzdlnsFw9nVMNzcCIDmEo60+BxT9rSwwsOXYrqs2q9gPQCuKwvHrSaw5eIlLieYgwVmnpuPDlXisVjCO2vJ3BubIsbN8+uUyfl79JwaDORW/epVKjBzem2d7P45Wo2bdOrMXmiQJtWaBoLQodADk4eHBpk2b2LlzJ4cOHSItLY1GjRrRoUOHghsLBBUMw8XzxI17lex9ZvtzxzbtOfDY44R371XswY8iZ2K88iHGKx+DogdJhyZ0LJrQN5HUZjdwXZ2lNh3bddVmofZ98r7HYMusNIdz8amsPXKVM7HmLXUHjYp2tUPo+HAIzrpC/2oqVRRFYdPWPXzyxVK2/b3PUt6iWX1ee6EPXTq2RHVr+85gMB9+/mreRBs6QEKtWSAoKQr1W8ZgMODk5MTBgwdp2bIlLVu2LK5xCQTlBkWWc2VpIUmk/LCIGx9ORcnMQHJ1xefd93B8sjfGP/4o9jHJib9jODvG4tau8uqEtvocVE41rOrl5dheFCs/eZmVtn3In73pbvzxp/kAuEYl0aZmEFF1K+HupLvv+xYl+Sk1g1mtednKTXz65TJOnr4ImAUIe3Ztw2sv9CWyQe08++7SqSXdOj8q1JoFglKiUAGQVqulcuXKFh0LgaCik77+91w6PSo/fzTevpYML8fmj+L30SdoQ0Itf/0XF6bMCxjOjcF0Yy0Akq4S2mof56vibNux/f7Iz6x01cGrgA6VJNGyRgBdIkLxcikbQot3snrddht+Wn58NG0ULR+pz9eLV/HFt78Sn3ATADdXZwb268bLw56hcqVAu+4h1JoFgtKj0OvM7777Lu+88w7ff/893t7exTEmgaBckL7+d2JHDs6laGeKj0MfHwdaHT7vTsP9uSFIKtuHeIsKxZSN8cosjFf+D0xZIGnQhIxCE/Yuktq14A6KkILNShWCtXqGdmpCiI97iY2rMKxet53nRkzIJVZ4LTqeZ4dPQKfTor+l41Mp2J+Xhz7DwP7d8HAv2WctEAjunUIHQPPnz+fs2bMEBwcTFhaGi4uL1fX9+/cX2eAEgrKKIsskTHsnXzlflacX7s8OLvbgR76xCcO5USiZZiVplUcbtNXnoXKpU6z3zYuCzErVKNR3TiM5U09ZNM6RZZnxk+blq9Ss1xtoEPEQr73Yjye7tkWrLV9nlgQCwT0EQDmu8AJBRSZr726rbS9bmOJjydq7+75FDG25tUuSGiX7KvpzYzEl/GquqAtEW/VD1H59S9W09GZ6dr7Xc0aWo+xc1ti557DVtldezJg4kjYtG5XAiAQCQXFQ6AAoxxVeIKjIyHGxRVovz/a23Nq1wai9HkNOWAWmdECFOmQk2rBJSJrS879SFIX/Libw6/6LdtV3cyybZqXXYwoOfgBi4+0zZRUIBGUTsW4rENwDimy0q57aP+Ce75GnW7vhOnLcjwCo3Jujrf4JKtf693yfouBMbDIr/rtg0fK5W9/GFtX8ytb5H6PRyPKVfzLto6/sqi+UmgWC8o0IgASCQpL66zISJo3Lv5IkoQ4MNqfE3wP2ubV7oa33JypV6a2kxCRnsHL/RQ5dMa+GOGjURNUNwdfVkYV/n863bVmxrMjO1rNkxXpmzf+Bi5fN3meSJKHkEcEJpWaB4MFABEACgZ2Y0lJJmDSetFU/A6CtUQvDmZN5yvn6Tpxxz67tdrm1G2+ipOyCUnBrT8nU8/uhy/x9JgaTAioJWtUIpFv9yhYtH61aZdOs9OlGlbl6ZE+Jj/luMjOz+fan35j7+U9ci44DwNfHk9de6EtQoC8jRr0HCKVmgeBBRQRAAoEdZB85SOxrwzFeugAqFV6j38TzpdFkbPojlw6QOjAY34kz7svg1F4X9pJ2a9cbZf48fp0NR6+SbTTrgdWr5E2vyHACPZyt6uZlVirLRq4eKdFhW5GWnsE3369m3oKlxN06xxMY4MPrL/Vn0LPdcXE2q2Q7Ozna0AESSs0CwYOCCIAEgnxQTCaSFy7gxszpYDCgCa6E/9wvcGzcDACXzt1w7vh4LiXoe135AVAUE6bU/+yqW1Ju7SaTwj/n41hz8JJlRSfMx5WnIqvwUGDeB69tmZWWlo5qckoaXyz6lflfLefGzWQAQkMCGDPyWZ7v0wVHR2sxxh5d2tAtqpVQahYIHlDsCoDGjBljd4ezZ8++58EIBGUJOSGeuHGvkrn9T+CWe/v/zUXt4WlVT1Kr7zvVPQdT5jkMp1/ElLy9gJol59Z+/PpNftl3gWs3zS7tPq4O9GwYTmS4L6pSTLe3l8QbyXz+zc8sWPgLySnmQ9rVwisx9rXn6NsrKl8NH6HULBA8uNgVAB04cMDq9f79+zEajdSsWROA06dPo1ariYyMLPoRCgSlQObOv4gb8yJyfBySzgGfie/h1n9QsenrKIqMfP1zDBcmgikDVM6o/Xojx36LWTmn+NzabRmWqlQSV2+m8+t/FzgenQSYXdofjwilba1gtOriFXe0l/y8umLjbzD/y2V8tXglaemZANR6KJzxrw2gV/fH0GjEArhAUJGx6zfA1q1bLf+fPXs2bm5uLF68GC8vLwBu3rzJ4MGDefTRR4tnlAJBCaEYDNyc+yFJC+aBoqCtUZOAeV+hq1V8qsqmjJMYTr+AKWU3ACqPtmgfWoDKqSqyz+PF6tZuy7DU3VFLoIczZ2KTUQC1SqJtzSC61AvFxaHsaPfk5dX11uuDOXHqAot+XENmllmUsd7DNRg/agBPPN7a4souEAgqNoX+E2jWrFls3LjREvwAeHl58d5779GpUyfeeOONIh2gQFBSGK5eJm7UCLIPmM/fuPUbgM+E91A5ORfQ8t5QFCPGq3MwXpwGSjao3dBW+T/UQUORJPOHdHG7tdsyLE3JMpCSZT4j0zjclx4Nw/Fzc7zv+xUl+Xl1vTr+I8vrxg1r8+aogXTu0KJU1bEFAkHZo9ABUEpKCvHxuZVS4+PjSU1NLZJBCQQlTdq61SS8/Tqm1BRUbu74fjAH1y49iu1+SsYxss+9hJK2DwCVVye0NT5H5Vg5V93icGsv2LAU3Bw0DGlVs8zo9eRgj1eXTqdl2cIP6NC2qQh8BAKBTQq9Fvzkk08yePBgfv31V65evcrVq1f55ZdfGDp0KL169bqnQXz22WeEh4fj6OhIs2bN+Pfff+1qt3TpUiRJyuVPNmiQ+azGnV+dO3e+p7EJHmxMmRnEv/M6ca8MxZSagkPDxoSs3VZswY9iMlDVcQXy4Zbm4Efjifahr9HV/c1m8FNcFGRYCpCabeRMXHIJjch+7PHq0usNODjoRPAjEAjypNArQAsWLGDs2LH0798fg8FsZqjRaBg6dCgzZ84s9ACWLVvGmDFjWLBgAc2aNWPu3LlERUVx6tQp/P3982x38eJFxo4dm+e5o86dO7No0SLLawcHB5v1BBUDRZZzpaobzpwidtRwDGdOgSTh+eIovEa/iaQtnnMuprQDyCeHUd3pCCig8umGrvp8JIfgYrlffkQnZdpVLyWz7BmWHj91wa56MXGJxTwSgUBQnil0AOTs7Mznn3/OzJkzOXfuHADVqlXDxcXlngYwe/Zshg8fzuDBgwFzgLV27VoWLlzIW2+9ZbONLMs8++yzTJ06lR07dpCUlJSrjoODA4GBgXaNITs7m+zs2w7WKSkpABgMBkuQV1Tk9FfU/ZYXSmP+GX+uJ/HDacixt0QDFQW1iyukpYDBgMrPH5+Z83Fs/ihG8+CK9P6KKRvT1f9DuTYLkNGb3NBWm4MU0BejJBX5/fLDKJvYfjqWtUeu5owOCVDd+vduXLRSmfkZiIu/wZzPl/DND2ssZSqVhFajtnmwOcDXq0z+nFX03wEgnoGYf/HNvzB9SkpehjcFcPbsWc6dO0fr1q1xcnJCUZRCLzfr9XqcnZ1ZsWKF1TbWwIEDSUpKYvXq1TbbTZ48mcOHD7Ny5UoGDRpEUlISq1atslwfNGgQq1atQqfT4eXlRbt27Xjvvffw8bFtXjhlyhSmTp2aq3zJkiU4OxfPAVhB6aBOTyNk+WI8Du8HILV2BFf6DUF2Kx5jTg/1GR52+RxXtTngiNE352TGUPRKybu2Jxi1HM90Jt1k/rvHU22gjlM6HupSUia0k9S0TNb+uZeN2/aTrTeb0NasXolnurWk9kOhpTw6gUBQlsjIyKB///4kJyfj7p7/7/VCrwAlJibSu3dvtm7diiRJnDlzhqpVqzJ06FC8vLyYNWuW3X0lJCQgyzIBAdaO2QEBAZw8mTs7BeDvv//mm2++4eDBg3n227lzZ3r16kWVKlU4d+4c77zzDo8//ji7d++2qeL69ttvW4k9pqSkEBoaSqdOnQp8gIXFYDCwadMmOnbsiLaYtlrKMiU5f0WWudr50dsrPyYTKoPeoqqjaDS4pafR6eln7lO5WcaU8g+KPgZJF4jK/REw6TFdmY4S/SlgAq0/qipzCHDvyuES/v7fSM9m5YFLHLxyEzAfbn6iQWWcNBLf7jyTZ7vBrR6iXmjRO57b+x5ITk7j829W8L+FK0hNM4swRtavxbtjh5CRkcWI0Xl7dX01byJdOrUs8rEXBRX9dwCIZyDmX3zzz9nBsYdCB0Cvv/46Wq2Wy5cvU7t2bUt5nz59GDNmTKECoMKSmprK888/z1dffYWvr2+e9fr27Wv5f0REBPXq1aNatWps27aN9u3b56rv4OBg84yQVqsttjdncfZdHiiJ+Wfu2wOXL2ArtJEAyWiEyxeQD/53z0rOcsJKK50eBZA1vqDSwi2fLrX/s2irfYyk9bEsz5bE/A2yiU3HrvHHkSsYZBMqCdrWCqZb/co468w/+mqN1qZhae8mVWkYlvfPWFGQ1zNIS8/gf9+sYN6Cn0hKNis313u4BhPHDbVKZ5dUqlw6QJWCy49XV0X/HQDiGYj5F/38C9NfoQOgjRs3smHDBipVqmRVXqNGDS5dulSovnx9fVGr1cTGxlqVx8bG2jy/c+7cOS5evEj37t0tZSaTCTAfxD516hTVqlXL1a5q1ar4+vpy9uxZmwGQ4MFEjostuFIh6uVql7AS/fG+WKs0A8YE878aL3Q1F6L26XpP/d8PR67eYPne88SnZgFQI8Cdvk2rEeJlfVYvL8PS0kh9z8zM5qvFK5n12Q8k3jBnn9V6KJwJY4faFDAUXl0CgeB+KHQAlJ6ebvNczI0bNwqdaaXT6YiMjGTz5s2WM0Amk4nNmzfzyiuv5Kpfq1YtjhyxtpGeMGECqampzJs3j9BQ2+cBrl69SmJiIkFBJWMcKSgbKHZ+hqv9AwqudHffimxe+bk7+LkTlRMq75KVX4hPzWT53vMcuWre7vJw0vF04yo0DvfN84yeLcPSkiQ7W8+iJb/x8affExNrztyqFl6Jd8cO4akn2uUb0AivLoFAcK8UOgB69NFH+e6775g+fToAkiRhMpn46KOPeOyxxwo9gDFjxjBw4EAaN25M06ZNmTt3Lunp6ZassAEDBhASEsIHH3yAo6MjdevWtWrv6ekJYClPS0tj6tSpPPXUUwQGBnLu3DnGjx9P9erViYqKKvT4BOWTzF1/kTjl7fwrSRLqwGAcmzQvdP+m5L+t7Slsob+OKfnvIhcxtHkro8z6I1fZeOwqRpOCWiXRvnYwXeqF4piP2WdxY8urKweDwcgPy//gw7mLuXo9DoDKlQJ5e8wg+j0VJby6BAJBsVLo3zAfffQR7du357///kOv1zN+/HiOHTvGjRs32LlzZ6EH0KdPH+Lj45k0aRIxMTE0aNCA9evXWw5GX758uVDePWq1msOHD7N48WKSkpIIDg6mU6dOTJ8+XWgBVQAURSFl0RckfjAZZBlN5XCMly+aT8faOC3rO3HGPR2AVm6d7ymqeveKoigcvJzIz/9d4Ea6WcqhdpAnfZpWJdCjdDMY8/Lq+r/Jr7Dzn2O8+38/cvGy+fkEBfoy/rUBDOzXDZ2u4p6JEAgEJUehA6C6dety+vRp5s+fj5ubG2lpafTq1YuRI0fe8xbTK6+8YnPLC2Dbtm35tv3222+tXjs5ObFhw4Z7GoegfGPKyiTh3TdIW7kcANcne+M7YxaZ2zaTMO0d5JjrlrrqwGB8J87ApXO3Qt9HURRMKXvsqivp7n/bNS+39pjkDJb9e54Tt9zavV0ceKZJFRqE+pS6AnJ+Xl0DXppsKffz9WLsK88x5LkeODmJP1AEAkHJUegA6PLly4SGhvLuu+/avFa5csnJ+QsEORivXyPmxQHojx4CtRqfd6bhPmgEkiTh0rkbzh0fz6UEfU8rP9nR6E8Px3RzYwE1JXAIQeVxb9llOdhya/dw0hLu48aRazcxKQoalUSnupXoXLcSOk3pHwAuyKtLUcDVxZExI59l5PA+uDg7lewABQKBgHsIgKpUqUJ0dHQum4rExESqVKmCLJdtUTXBg0fmv7uIHTkEU2ICKi9vAj79GqcWra3qSGr1Pae65yAnrEJ/+iUwJoLKEbV/f+SYhWBRFrLcDQBdtVn35dqel1t7cqaBQ1dvAFCvkjfPNKmCn1vZCSIK8urSaNTMmTac4ErVRPAjEAhKjUKboeal+JyWloajo2ORDEogsAdFUUj+7huin+uFKTEBXe26hKz+M1fwc9/3kdPQn34B/fHeYExEcm2AQ6M96B5agK7OMtDd5eXlEIKuzlLUvk/e8z3tcWt3ddDwYtvaZSr4gYI9uLQaNc5ODsQm3CihEQkEAkFu7F4BylFKliSJiRMnWqXCy7LMnj17aNCgQZEPUCCwhZKdTcKk8aT+/CMALt2exO/DeaicivbgrynlX/QnB6JknQMkNKFj0YRNRlLpAFD7PomjzxOYkv9G0Ucj6YJQebS6r5UfsM+tPe2WW3tpprDfTUxsAj+v3GRX3QBf72IejUAgEOSN3QHQgQMHAPNf3UeOHEGn01mu6XQ66tevz9ixY4t+hALBXRhjool9eRDZB/eBSoX3m5PwGDaySA/+KooR4+X/w3hpBiAjOVRGW3Mhas/cq0uSpC7yVHd7XdjLilt7aloG8xb8xCcLlpKRmZVv3ZxvU7PGD5fAyAQCgcA2dgdAW7duBWDw4MHMmzevyD2yBAJ7yNr3L7EvD0KOj0Pl4Yn/J1/h/Gjh9afyw5R5Dv3JQSip5kwvtV9ftDU+QdJ4Ful98iJTb+S/i3mfobkTd6fSTRk3GIx8u+Q33p+9iPgEs/hi00YP07lDc6bP/Bqw7dUFCMVmgUBQqhT6EPTcuXMxGo25ym/cuIFGoxGBkaDYSFn6HQmT3wSDAe1DtQn84ju0YVWKrH9FUZBjv8Nw7nWQ00DtgbbGJ2j8+xXZPQriyNUbLPnnLDcL2P4Cs2dXDf+Sd5UH87Na88dfTPngC86cvwKY1ZunvvMCPbq0QZIkatYIt6ED5M+HU14FY3KpjFsgEAhyKHQA1LdvX7p3787LL79sVb58+XLWrFnDunXrimxwAgGAoteTMPVtUn9aDIDL40/g99EnqFxci+4ehkT0Z17ClLAKAJXHo2hrLkTlGFZk98iP1CwDy/eeZ+8Fc7Dg6+rII1X9+P3wlTzb9G5StVQ8u3bvPcyE6f9jz76jAPj6ePL2mMEMefYJtHeoTufl1WUymcTvCYFAUOoUOgDas2cPs2fPzlXetm1bm9pAAsH9YIyPJfblIWTv2wOShNcb7+L50qgiPe8j3/wT/amhZvd2SYsmfAqaSmPu+yCzPSiKwr8X4vl573nSso1IEnSoHUL3BpXRadSEeLmUmlv73Zw+e5nJ//cFv/3xFwDOTo68+kIfRr3YD3c3F5ttbHl15RgYCwQCQWlS6AAoOzvb5haYwWAgMzOzSAYlqHgospxLqDD76CFiXxqIHBONys0d/7lf4PxYx3vrX5FzZWqhGDBcmIB87RMAJKea6Gp9h8qtZMw1b6Rns+Sfsxy9Zj47E+LlzPPNaxDu62apUxbc2mPjEnl/9iK+XfI7siyjUqkY0K8r744ZQlBgyQZhAoFAUFQUOgBq2rQpX375JZ9++qlV+YIFC4iMjCyygQkqDunrf89lVSG5e6JkpIHRiLb6QwQs+A5d1er31L+csNLs3H6neanGH0mtQ8m+CoA6+CW0VT5AUhe/f5aiwF9nYllz8ArZRhmNSqJLvcpE1Q1BbcP3rrjd2m0ZlqrVatLSM/jki2XM+99PpGeY/7jp0rElU995gdoPFd3ZK4FAICgNCh0Avffee3To0IFDhw7Rvn17ADZv3szevXvZuLEgewCBwJr09b8TO3Iwd/smKClJADjUa0jQ97+icnOz0bpg5ISV6I/3xVqpGTDGoRgBtQe62t+h9n78nvovLDEpmexJd+fmfxcBqOrnxvPNaxDkWTrGpbYMS4MDfencoQW/b/ibuHizWGHjhrV5b8LLtHqkQamMUyAQCIqaQgdALVu2ZPfu3Xz00UcsX74cJycn6tWrxzfffEONGjWKY4yCBxRFlkmY9k6u4OdODHGxSM73Fhwoimxe+bk7+LkTtTMqr0731H9hkE0mNh67xtpDlzGatDhoVPRsFE6bmkGoSsm4NC/D0usxCSz8YQ0AVcNDmPLWCzzZrW2pG6wKBAJBUVLoAAigQYMGLFmypKjHIqhgZO3dbbXtZQtTzHWy9u6+Jx8vU/Lf1ttettBHY0r+u8iFDO/kUmIa3+86w9Wb6QD4afS80qUpAZ5Fl8VWWAoyLAXwdHdlz5/f4uQkLG4EAsGDR6G9wADOnTvHhAkT6N+/P3FxcQD88ccfHDt2rEgHJ3iwkeNii7Te3Sj66CKtlxcmk8KpmCT2XojnVEwSJpM5qtAbZX7Zd4H/W3eQqzfTcXHQMOCRakQ6p+Lt4nBf97xfCjIsBUhKSWPvgRMlNCKBQCAoWQq9ArR9+3Yef/xxWrZsyV9//cV7772Hv78/hw4d4ptvvmHFihXFMU7BA4jaP6BI6+VCsi/IkHRB99Y/Zsf2u9PUPZ11tKoewJ4L8cSnmm0hGof70rtJVZw0EuvKQExx5Zp9QWVBxqYCgUBQXin0CtBbb73Fe++9x6ZNm6z8wNq1a8c///xTpIMTPNgY4+PyryBJqINCcGzSvNB9y0k7MJwdVUAtCRwqmVPi74EDlxL4YvvJXKalSRl6fj98hfjULDyddbzcrg7DWtfC3UmXR08ly4b/b+++w6Mq2gYO/85usukFCKmEDqHG0IwBFUQQXgUBG70piAgKIiIoHRRRqh9IExErCApYEI1RQAIGhNCLobd0SO+75/sjEtk0Nr3sc18X1+uefc6cmXNWed6ZOTNBB5izcK1Jse6utcq4NkIIUTGK3AN04sSJfOf/uLq6EhMTUyqVEtVf0lcbuT13WsEB/064dZnxDkoR9oxSVZWs60vJuvQ22ZuY1vn3VXcF48nQ2eXrGi0u1oKHBoPK5kMXC42xstAwo1cb7Kwrdr+uOy5cus7U2f/Hz7/tB7Jfr78zXJebomRvW9HJ37c8qyiEEOWmyD1Azs7OhIfnnTMRGhqKl5dXqVRKVF+qqlL71x+4PWcqqCqOg0fiuuITtO6eRnFad0/cVm7Armcv08vOiifj9HNkXZoK6NG6DsKq/Ql0LTaDzrh8rLzQtdiE1qVfsdoRFhWfp+cnt/QsA9fjkotVfmlKTkll9ntr6dB1GD//th8LCy0TXhrAmmVvoyjGG5TCf58XznlVNiwVQlRbxdoL7M0332TLli0oioLBYCA4OJjJkyczbNiwsqijqCZUg4G4d2fi/vN2AJxfmUyNiW+iKAp2PZ7IsxJ0UXp+DEnHyDg9EDXtPCg6LBstQesxGkVR0Lr0w7rWk3lWgi7JVhcJqZmlGlcWVFXl2+9/5+15H3EjPHu48dHOHXh/7gR8GmfvcWZrY53/hqVzXqXP42X3ZpwQQlS0IidA7777LuPGjcPb2xu9Xk+LFi3Q6/UMGjSI6dOnl0UdRTWgZmYS/earJG3fAoDz2/Oo+cLYnO8VrbZYr7oDZEV8Rub58WBIQ7Gqi67FJjQO7Y1iFEVbqq+62+hMS54cbSpm+OvkmQu8MWM5fx4IBaCetwfvzR5Prx4PGa3nU9CGpdLzI4So7oqcAOl0OtatW8eMGTM4efIkSUlJtGnTRhZBFAUypKYQNf4FUv4IBK2WawOfx3vYqBKXqxrSyDz/GvqI9QBoavRA1+xTFMuynbh7KSaRbw4WPv8HsjctbeLqVKZ1ye12XCLzF33Muo3bMRgMWFvreH38ECa+NAgbm/zfistvw1IhhKjuirUQIkDdunXx9vYGkBViRYH0CfFEjhpM2t9/oVhZU+vDdZy4x9wZUxhSL5FxZgBqUiigYFFvJhZ1p6EoxVrayiR6g4Gdx6/x84lrGFSw01mQnJF3Y+A7nuvQsNw2LdXr9Xy26Sdmv7eW2FvxQHbvzoJZ46lbx71c6iCEEFVJsf62WL9+Pa1atcLa2hpra2tatWrFxx9/XNp1E1VcVnQk4QOeJO3vv9A4OOLx2VZsunQrcbn62J9ID/XPTn4saqFr9SOW9d4u0+QnIj6F938+zk/Hs5OfDvVrM7dfe8Z0boazrfHr7TVsdYzp3Iw29cpnp/SDh0/RpdcYXpnyAbG34vFpUo8fNi3ly3XzJfkRQogCFLkHaObMmSxZsoRXXnmFgIDs9VkOHDjAa6+9xtWrV5k7d26pV1JUPZlXLxM+7Bmyrl5GW9sV90+3YNW8JZmZxZ8UrKp6si7PJuvaQgAUh/vRNf8ajbV3aVU7D4OqsudsON8duUym3oCtTstA/8Z0aFAbgDb1XLjPuxZhUfEkpGbiaGNJE1enUu35KWi39sioWGa+u5ovt+wCwNHBjrdff54XRzyFpWWxO3eFEMIsFPm/kqtWrWLdunUMHDgw59iTTz6Jr68vr7zyiiRAgvQzp4gY8Sz66Cgs6tbHY+MWLOs1KFGZakYUGWeHYoj7AwCt5zgsGy5E0ZTd4oK3k9PZuD+Ms+FxALTwcGZopybUsDWeS6PRKPi4O5dJHQrarf2Rhzrw/c97SExKAWBo/8eZPW0MbrVrlkk9hBCiuilyApSZmUn79u3zHG/Xrh1ZWQXPhxDmIe3vECJGDcKQEI/OpwXuG7/BwrVkwzD6+P1knBkEGTdBY4dl09VYuPYvpRrn79ClaL4OOU9Khh5LrYan22Xv3F6e890K2639yy0/A9DOrzmL5k2gQ9uW5VYvIYSoDoqcAA0dOpRVq1axZMkSo+Nr165l8ODBpVYxUfWk/BFI5LjnUdNSsWrnj/vHX6J1ci52eaqqor/xf2RemgpqFoqND7oWm9HYtSi9SueSnJ7J1yEX+Pty9qrm9WrZM/LBprg72ZbZNfNjym7tNZwc+G37SiwtK8dK00IIUZUUa6LA+vXr+fXXX3nggQcACAkJ4erVqwwbNoxJkyblxOVOkkT1lbh9C9FTXoGsLGy6dMNt5SdobExPGlRVb7RQoWLnS2bYWAwx3wGgrf0slk1Wo1g4lFUTOHXjNp/tDyM+NQONAo/71uV/reug1ZTd5OqCmLJb++34RA4cOimvsAshRDEUOQE6efIkbdu2BeDChQsAuLi44OLiwsmTJ3Pi5NV48xH/6Vpi574FgH3fZ6m98EOUIvRK6GO2kXF+EmTcuOuoBZAFiiWWDd9H6/lymf2mMrL0fHv4MnvOZW/x4uZow8gHm1LfpeySrXsxdRd22a1dCCGKp8gJ0B9//FEW9RBVkKqq3F72HnH/txgAxxEvUmv6fJQi9JjoY7aRcXoAxhuVAmTPJ7OoNxMLr3GlVOO8LsUk8um+f4hMSAWgi48HT7Wrj86i4lZCTk1N5+dfg02Kld3ahRCieIqcAEVHR1O7du18vztx4gStW7cucaVE5aPq9UZ7dVm1vZ9b894m4csNANSYNA3ncZOK1Eujqvrsnp88yc9/ssLXYOE9uUT7dkH27u13v6re0MWBXSev5yxq6GSjY3inJrTwrFGi65TU7n2HefXND7h4+UahcbJbuxBClEyRE6DWrVuzfv16nnjiCaPjixYtYsaMGaSmppZa5UTlkLzrR2LmvoU+4mbOMcXaGjUtDRQFlzkLcRzyfJHLNcTvyzXslY/06xji95VoH6/QKzFsPnTRaPd2rUZBb8hOvNrXd2GgfyPsrCpuMvGt2wlMn/8Rn236CQBP99oMePoxln70JYDRZGjZrV0IIUquyAnQpEmTePrppxk5ciRLlizh1q1bDBs2jBMnTvDVV1+VRR1FBUre9SOR40aS+3UkNS0NAKeRLxUr+QFQM8JLNS4/oVdiWLPnbJ7jd5KfR5t78myHhsUuv6RUVeW7H/5g8oxlRMfcBmD08H7MmTYGRwc72vk1l93ahRCiDBQ5AZoyZQrdu3dn6NCh+Pr6cuvWLfz9/Tl+/Dju7rLsfnWi6vXEzH0rT/Jzt6Sfv6fmtNkoxeiJUA3pJsUpOo8ilw3Zw16bDxW+aemRKzE83a5Bue3ZdbcbN6N47a0l7AzMnu/j06QeKz6YQkCH/4a1ZLd2IYQoG8V6Db5x48a0atWKb7/9FoD+/ftL8lMNpR06YDTslR99+A3SDh3A5oEHi1S2IX4vhguT7xGlgJUXGqeilX1HWFS80bBXfm6nZBAWFV9mKznnx2BQ+fjzHcxduI7EpBQsLS2Y/MpQJo8fgpVV3pWtZbd2IYQofUVe4CQ4OBhfX1/CwsI4fvw4q1at4pVXXqF///7cvn27WJVYuXIl9evXx9raGn9/fw4ePGjSeZs2bUJRFPr27Wt0XFVVZs6ciYeHBzY2NnTr1o2wsLBi1c2c6aMiSzXuDnfLfRjO9AF9PIqNz79Hc/fAZH/WNVpc7AnQ90p+7khILf7+ZEV1Nuwyc5d8zRszlpOYlML9bVsS/MsnvP368/kmP0IIIcpGkROgrl270r9/f/766y+aN2/OqFGjCA0N5erVq8V6A2zz5s1MmjSJWbNmceTIEe677z569OhBVFRUoeddvnyZyZMn89BDD+X57v333+fDDz9k9erVhISEYGdnR48ePUj7d96KMI3W1a1U41RVxXBjCb72y0HNQOPSD6u2B9G12Aw6T+NgKy90LTahdelX1GoDEJ+SQeCpe0yw/pejTdlPfk5Pz+DdJRvo/MQYwi7exN7OhkXzJxK4fSUtfEq2T5oQQoiiK/IQ2K+//krnzsaTLxs1akRwcDDvvPNOkSuwZMkSRo8ezciRIwFYvXo1P/30E5988glTp07N9xy9Xs/gwYOZM2cOf/75J3FxcTnfqarKsmXLmD59On369AHgs88+w83Nje3btzNgwIA85aWnp5Oe/t98lISEBCB737OS7F6enzvllXa5ZUHTug3Y2kFKMipgsNTB3Wv8KApaNw+0fu3v2R5V1WO49AZq5Jrsz65jURouJMugBadeaNv+D0PCX6gZESg6dzSOD2BQtBiKcZ/ORcSz8cAFEtOyz9VgKDDTd7bVUb+GbZk+j4OHTzFh6iLOhl0BoE2rhnzy0Rzq1/XCYDBgMBjK7NqVUVX6d6AsmHv7Qe6BtL/s2l+UMhVVLWy3obKVkZGBra0tW7duNRrGGj58OHFxcezYsSPf82bNmsXx48fZtm0bI0aMIC4uju3btwNw8eJFGjVqRGhoKH5+fjnndO7cGT8/P5YvX56nvNmzZzNnzpw8x7/66itsbct3D6hKQ1Xx+uYzav61F4NWy5XRE0jyKd6GmxrS8bVbjqvuEKqqcC51GFfTe5VyhbPnap9Pt+F8ug2g4KDJws82EXttxSQYqWkZfLPjTwL3hqKq4Ohgy7Bnu/JAOx9ZKV0IIcpASkoKgwYNIj4+HkdHx0JjTe4Bevzxx/n6669xcnIC4L333uOll17C2dkZgNjYWB566CFOnz5tckVjYmLQ6/W4uRkPobi5uXH2bN5XlwH27dvH+vXrOXr0aL7fR0RE5JSRu8w73+U2bdo0oz3MEhIS8Pb25rHHHrvnDSyqzMxMAgMD6d69e6XexDJu8Tsk/rUXNBocR4yhwc5t6Dd8lPO91t2TWlNmYNutZ6HlqJnR6M8+B0mHQLGChmu4etiu1NufkJrJxgPnOf9v711Aw9o8064eOgstx6/F8t2Ry8TfNSfI2VZHv7b18fUu2UrKO38NZsY7qwiPjMk55uHmQr/eXfn621+4+e/r64Of7cm8t1/C3s6mSjz/slRV/h0oK+befpB7IO0vu/bfGcExhckJ0C+//GI0TPTuu+/y3HPP5SRAWVlZnDt3zvRaFkNiYiJDhw5l3bp1uLi4lFq5VlZWWFlZ5TluaWlZZj/Osiy7pOLWrSBx7QoAXOYvwnHAMGpPnWW0ErR1h4B7vvpuSL1AxsnekHYeLGqga/ktBlt/YGeptv9cRBzr/zxHQmomOgsNg/wb80Aj15zv2zV0p019N6OVoJu4OpX41fcdO/cwZMyMPKsEXLxyk8UrvgCgQT1PPnzvDR55uD3wX/dsZX7+5cXc74G5tx/kHkj7S7/9RSnP5AQo90hZaYycubi4oNVqiYw0fosoMjIy39fqL1y4wOXLl+ndu3fOsTvzJywsLDh37lzOeZGRkXh4/Ld+TGRkpNGQmMhfwjdfcmvBbABqTpmJ44BhAChabZFedTckHCL9VF/IjEaxqoeu9fdobJsXa05PgddQVXaduMYPx66iquDpbMvoh5vh4Zx32FKjUUr1VXe9Xs+UmcsLWyIJeztb9v/6CQ72dqV2XSGEEKWjyG+BlSadTke7du0ICgrKOWYwGAgKCiIgICBPfLNmzThx4gRHjx7N+fPkk0/yyCOPcPToUby9vWnQoAHu7u5GZSYkJBASEpJvmeI/ybt+JOat1wBwevEVnF96tVjl6GN/IP14t+zkx74NVn570dg2L82qkpCawf/9dorvj2YnPwGNXHnzf/flm/yUheCQ40arM+cnKTmF0OP/lEt9hBBCFI3JPUCKouSZuFkaEzknTZrE8OHDad++Pffffz/Lli0jOTk5562wYcOG4eXlxYIFC7C2tqZVq1ZG598Zgrv7+MSJE5k/fz5NmjShQYMGzJgxA09PzzzrBYn/pAbvJXLii2Aw4NB/CDXfnFmscrJuriHz/ATAgKZGD3TNv0KxcCjVuoZFxvPx3nPEp2ZgqdUw0L8RHRub9ip+aYmIii3VOCGEEOWrSENgI0aMyJkrk5aWxksvvYSdXXb3/t3zg4qif//+REdHM3PmTCIiIvDz82PXrl05k5ivXr2KRlO0jqopU6aQnJzMiy++SFxcHA8++CC7du3C2tq6WHWs7tKOHSFizFDIyMCuZ29c5i8ucnKrqgayLs8g69oHAGjdRmDZZCWKpvTGdw2qyq8nr7Pj6BVUFdydbHixczM8nct/iMnWxrTfkrtrySZZCyGEKBsmJ0DDhw83+jxkyJA8McOGDStWJcaPH8/48ePz/W737t2Fnvvpp5/mOaYoCnPnzmXu3LnFqo85yQg7R8TI/qgpydh06ozr0tVF3tdLNWSQ+c9o9FFfA2BRbwYWdaeX6qveSWmZbNj3D6duZq827t+wNgP9G2NtWf57Yu36bT8T3vyg0BhFyd60tJO/b6FxQgghKobJCdCGDRvKsh6iAmTeuEb48GcwxN3G6r62uK3eiJLP23CFUbPiyTj9HIa4PwAtlk1XY+E+/J7nFcX5qAQ+3nuWuJTsIa8B9zekY2O3cl9LJyk5hWlzVrLhy+8B8PSozc3waBTFeL/YO9VaOOdV2bRUCCEqqWJthiqqvqzoKCKGPo0+IhzLJj64f7IJjZ19gfGqqscQvw81IxxF54HG6UHU9JtknHwSNeUUaO3RNd+EtuZjxaqPwaDmeU0dBQJP3WBH6GUMKrg5Zg95edUo/yGv/QePM2biO1y6chNFURg/+jlmThnNr3/8xZSZy40mRHt5uLJwzqv0ebxzISUKIYSoSJIAmSFDQgIRI/uTefkiFl7eeGzcirZGzQLj9THbyDg/CTLu2lvLwhXIgqxboHPHqtUONPbF27E89EoMmw9dNNq81NHGEmcbHVdvJQPQoUFtBj/QCGvL8v3JpqdnMH/Repat+hpVVfH2cmPNsrdzdmfv83hnevV4kOCQ40RExeLuWotO/r7S8yOEEJWcJEBmxpCWSsToQWScPoG2Vm08PtuKhbtHgfH6mG1knB4A5FrwJuvfzWp1Xlj57UZjXa9Y9Qm9EsOaPXlX/U5IzSQhNROtojDAvxEPNin/Ia8Tp84zasI8Tp25CMDQ/o+zcM6rODoY90BptdqchEgIIUTVIAmQGVEzM4ka/wJph/5CsXfA/dPNWDZoVHC8qs/u+cmd/BhHoVjVKVZ9DAaVzYcuFhpja6WlUznP99Hr9Sxb9TXzF60nMzMLl1rOrPhgCr16PFRudRBCCFG2KnQhRFF+VIOB6DdfJeX3X1GsrHH/+CusWhb+hpIhfp/xsFd+Mm5mxxVDWFS80bBXfhLTsgiLii9W+cVx4dJ1ejw1nlkL1pCZmUWvng9x8PfPJPkRQohqRnqAzICqqsTOn07S9i2g1eK6Yj029997VWw1I9y08k2Myy0h1bRtMUyNKwlVVVn/+Q7emruSlNQ0HB3s+GDuBAY921N2bhdCiGpIEiAzEPd/i0j4dC0AtT9Ygd2jPUw6T9EVPDeoOHG5OdqYtkiiqXHFFR4Rw8uT3yPwjxAAHu7YltVLp1G3Tt796IQQQlQPkgBVc/GffcztZQsBqDVrAQ59nzX5XI3Tg2BRM/tNr3wpYOWVHVcMSWn37tmpYavLfiW+hPR6fb5vam3dEcRrby3mdlwi1tY65kx7ibHPP13k1ceFEEJULZIAVWNJO7YSO3sqAM6vvoHT8NFFOt9wOwiyCpp/kz0spGu0GEUp4srRKvx2+iY7jl27Z+xzHRqi0ZRsCGrHzj151urxcKtF/bqeHDh0AoA2vj6s+3A6zZrUL9G1hBBCVA2SAFUTql5P2qED6KMi0bq6YUhOJuqN7O1FHIeNosaEKUUqTx+/n4zTzwJ6NI4PYEi9Cpk3/wuw8kLXaDFal35FK9dg4GSqHdf/TX66+HjQxM2RLX9fMpoQXcNWx3MdGtKmnkuRys9tx849DHlxutFKzQDhkbGER8ai0Wh4c+Jwprw6DMtyXmNICCFExZH/4lcDybt+JGbuW+gjbub5zr7PM9Sa+W6RJvIako6ScbIPGFKzd3Rv+S0o2jwrQRe15yclI4s1u89xPdMaRYFn2zeka3NPANrUdcmzEnRJe370ej1TZi7Pk/zczaWmE1MnDpeFC4UQwsxIAlTFJe/6kchxIynob3nbbj1RijCfxZDyD+kneoE+Ho1jJ3QtNqNodABonYu/tUNMYhorfj9FRHwqWlRGPeRDm/quOd9rNAo+7s7FLj8/wSHHjYa98hMVc5vgkOOykKEQQpgZmelZhal6PTFz3yow+QGIfXcWql5vUnmGtGtknPgfZEah2N2HrtU2FK1tiet5MTqBhT8fIyI+FWcbSx6wj6eVV40Sl3svEVGxpRonhBCi+pAEqApLO3Qg32Gvu+nDb5B26MA9y1Izosg48T/U9GsoNk2wav0TioVziev49+VolvxygsS0TLxr2vH6Y61w1JqWkJWUna2NSXHurrXKuCZCCCEqGxkCq8L0UZGlEqdmxZN+shdq6j8oVt7oWv+MonMt9Jx7UVWVXSevsyP0CgC+dWry/EM+aDGUqFxTHTpyijdmLC00RlGyd27v5F/4ithCCCGqH0mAqjCtq1uJ41R9Chkn+6ImHQXL2uha/4zGum6J6pWlN/DlX+c5cCF7w9RHm3vydLsGaDQKmZllmwCpqsrKdd8w/Z1VZGXpcatdk8joWyiK8UjhnTnhC+e8KhOghRDCDMkQWBVm3SEATa1CXhNXFLQeXlh3yH/bC9WQQcbpARgSgkHrhFXrn9DYNi1RnZLTM/nwt1McuBCFosBA/0Y8Wwpr+ZjidlwiA55/i6lzVpCVpadfr0c4svdLvlw3H0/32kaxXh6ufLF2Pn0eL/7EbiGEEFWX9ABVYYakRBQKSCz+7eJwmfEOSj49HKqqJ/PcCAy3d4HGBl2rHWjs/UpUn+jEVFYEnSYyIRVrSy2jH25Gy3KY7AzZQ17Dx87m6vUIdDpL3pv1CqOH90VRFPo83plePR7MdyVoIYQQ5kkSoCpKVVWip7yCPjYaba3aqFothqiInO+17p64zHgHu5698j03M2w8+uitoFiia7EFrVPHEtXnfGQ8q3afITk9ixq2Vox/tAVeNexKVKYpVFVlxdrNzHh3NVlZehrW9+Kz1XPwa+1jFKfVauVVdyGEEDkkAaqi4td/RErgz6DT4f7J1+hatDZaCdq6Q0ABPT8qWZemoY9YD2jQNduItuZjJarLwYtRfLY/jCyDSr1a9rz8SAucbHUlKtMUt24nMHbSAn76dR8A/Xo9wooPpuDkaF/m1xZCCFG1SQJUBaX9HcKthXMBcJk+H6vWfgDYPHDvTUmzrr1P1vUlAFg2WYW29jPFroeqquw8fo0fjl0FwK9uLZ5/sCk6i7IfWjp4+BTDx87i2o1IdDpLFs5+hVHD+hZpxWshhBDmSxKgKkYfG0Pkq6NAr8eu91M4DB5p8rlZN9eQdXkGABYN38fCw/RzDQbVaKuK+rUc+CrkPCEXs1da7t7Si35t66Mp4wTE1CEvIYQQojCSAFUhql5P1KSx6CPCsWzYmNrvLDa5xyMr8isyz78KgEXdaVjWmWjydUOvxLD50EWjzUq1GgW9QUWjwED/xjzU1L1IbSmO/Ia8Vi56E0eHsp9rJIQQonqRBKgKiVu5hNQ//0CxtsFt5QY09g4mnaeP/ZHMcy8AKlrPl7GoN9vka4ZeiWHNnrN5yzRkL6rzv1be5ZL8yJCXEEKI0iTrAFURqcF7ub38fQBc5n2Azqe5Sefp4/aQcXogoEfrOhjLRktMThoMBpXNhy4WGrP/QiQGQyHbrZeQqqp8uHoTjz01jms3ImlY34s/fljN6OH9JPkRQghRbNIDVAVkRYYTNXEMqCoOzw3G4ekBJp1nSPybjFP9QE1HU6s3lj7rUBTTc96wqHijYa/83E7JICwqvsQ7uev1+jzr9MQnJPPSa++yMzAYgKd6d2XFB1NkyEsIIUSJSQJUyalZWUS9Ohp9bDS6Zi2pNfu9/ONUPYb4fagZ4Sg6D7CoScaJXqBPQuP8CLrmX6IoRXvcCamZpRpXkB079zBl5nJuhEfnHKtdyxmDqhJ7K16GvIQQQpQ6SYAquVuL3yXt0F8o9va4rfwEjXXeHc71MdvIOD8JMm7cdVQDGFAcOqBrsRVFY13kazvaWJZqXH527NzDkBenG+3TBRAdGweAm2stvvv8fe5rVbItOoQQQoi7SQJUiSUH/UL8mg8BqP3eh1g2aJQnRh+zjYzTA4Dc83CyNx218HwJxcK0ydK52VhaoORT8t1q2Opo4upUrPL1ej1TZi7Pk/zcTatRaNU8b7uFEEKIkpBJ0JVU5vWrRE8eB4DjiBexf/zJPDGqqs/u+SkkRcm8PAtV1Rf5+hHxKfxf0KlCkx+A50qw0WlwyHGjYa/83IyIITjkeLHKF0IIIQoiCVAlpKanEzX+BQzxcVjd15ZaU2fnG2eI35dr2Csf6dez44ogOjGNZYEnSUzLxLumHSM6NcE519YWNWx1jOncjDb1CtmN/h4iomJLNU4IIYQwlQyBVUKxC2aRfjwUjZMzrivWo+jy31dLzQg3qTxT4wBuJaezLPAEcSkZeDjZMqFbK+ytLbm/gavRStBNXJ2K3fNzh7trrVKNE0IIIUwlCVAlk/TTdhI++xgA18UfYenlXWCsovMwqUxT4+JTM1j26wlik9JxdbBmYvfs5AdAo1FK/Kr73fR6Pd/v3FNojKKAl4crnfx9S+26QgghBEgCVKlkXDxP9LSJADi/NAHbroXv0q5xehAs3SEzooAIBay8suPuISktk+WBJ4lKTKOmnRUTH2tdZju6p6VlMGTMTHb9dqDAmDtvuy+c8yrafHa1F0IIIUpC5gBVEobUFKLGPY+alIT1/QHUmDTNhLNUFMuaBXyXnUHoGi1GUQpPIFIyslj+20luxqXgZKPjtcdaU9POqmgNMNHNiGjmLd3Ert8OYGWlY+OqOXy5bj5eHrWN4rw8XPli7Xz6PN65TOohhBDCvFWKBGjlypXUr18fa2tr/P39OXjwYIGx3333He3bt8fZ2Rk7Ozv8/Pz4/PPPjWJGjBiBoihGf3r27FnWzSiR2NnTyDh3Gm2t2rh+uA7F4t6dc1lX5qGmnAaNNVi6Gn9p5YWuxSa0Lv0KLSMtM4v/++0U124l42BtyWuPtaK2Q9HXDDLF8ZNhdO87jsvXonCp5czOb5bz9JNd6fN4Z06HbGHnlg/5ZOUsdm75kFN/fSPJjxBCiDJT4UNgmzdvZtKkSaxevRp/f3+WLVtGjx49OHfuHK6urnnia9asydtvv02zZs3Q6XT8+OOPjBw5EldXV3r06JET17NnTzZs2JDz2cqqbHo0SkPi1q9J3PIlKAquy9dg4XrvzUX1twLJupq9KrRl07Voaz9rtBK0xunBe/b8ZGTpWfn7aS7FJGKrs2BC91a4O9mWSpty2/XbfoaPnU1ySiqebjX5acuHNGlUL+d7rVbLwx3blMm1hRBCiNwqPAFasmQJo0ePZuTIkQCsXr2an376iU8++YSpU6fmie/SpYvR5wkTJrBx40b27dtnlABZWVnh7m7aLuXp6emkp6fnfE5ISAAgMzOTzMySbfOQ253y7vxvxrkzxMx8AwDHVyZj0SHgntdUM8LRnx0OqChuL6DWeJqsLAPYdQS77FWBDFkG7iyGmG899AbW7f2HsMgErC21jOvig5u9rtTbC7B24zamzVmJwWDgoQA/hj79IF4etcvkWpVd7udvjsz9Hph7+0HugbS/7NpflDIVVS1sHd6ylZGRga2tLVu3bqVv3745x4cPH05cXBw7duwo9HxVVfn999958skn2b59O927dweyh8C2b9+OTqejRo0adO3alfnz51OrVv6vU8+ePZs5c+bkOf7VV19ha1s2PSIAmrRUGi2dj3VUBInNWnF59ATQFD4qqaCnnf1calqeJiGrHgcT38FA0Xq3DCqEpjgQlaVDi0oHuwRqWGSVpCn5X8dg4Iutu/ll9xEAOge04vmB3bGwkEnNQgghSl9KSgqDBg0iPj4eR0fHQmMrNAG6efMmXl5e7N+/n4CAgJzjU6ZMYc+ePYSEhOR7Xnx8PF5eXqSnp6PVavnoo494/vnnc77ftGkTtra2NGjQgAsXLvDWW29hb2/PgQMH8n2jKL8eIG9vb2JiYu55A4sqMzOTwMBAunXrRsKbr5K6cwdaNw/ctgeirXnv9W70V+ei3lgIGnu0vvtQbJoU6foGg8rGA+c5cvUWFhqFlzr74ONevK0sCpOUnMroCfNz3vSa8cYoXnt5IFlZWQQGBtK9e3csLYu/h1hVdef5m2v7Qe6Bubcf5B5I+8uu/QkJCbi4uJiUAFX4EFhxODg4cPToUZKSkggKCmLSpEk0bNgwZ3hswIABObGtW7fG19eXRo0asXv3bh599NE85VlZWeU7R8jS0rJUH46q15N29G8AkhfNJ3XnDrCwwG3FeqzdTJz3c+P97Lo1/QgLxxZFur5BVflqfxhHrt5Cq1EY06U5reoU9BZZ8d0Mj+bZEW9y7GQYVlY61i57m6ef7AqQs5t7ad/bqsbc2w9yD8y9/SD3QNpf+u0vSnkVmgC5uLig1WqJjIw0Oh4ZGVno/B2NRkPjxo0B8PPz48yZMyxYsCDP/KA7GjZsiIuLC+fPn883ASoPybt+JGbuW2TcvoXNy2+QuHEdCmDf5xms291/z/PV9JtknBsBqGg9RmPhOuBepxifr6psCrnAgQtRaBQY9ZAPrcsg+Tl+Moxnhr/JzYhoXGo5882G97i/XctSv44QQghREhX6GrxOp6Ndu3YEBQXlHDMYDAQFBRkNid2LwWAwGsLK7fr168TGxuLhYdqKyKUtedePRI4biT7iJqgqdTeu4s4mEknfbiJ514+Fnq+qWWScHQaZ0Sh2vlg2XFSk66uqyreHL7P3nwgUYESnpiXaw6sgu37bT/d+47gZEU3TxvXY/eMaSX6EEEJUShW+DtCkSZNYt24dGzdu5MyZM4wdO5bk5OSct8KGDRvGtGn/LQq4YMECAgMDuXjxImfOnGHx4sV8/vnnDBkyBICkpCTeeOMN/vrrLy5fvkxQUBB9+vShcePGRm+JlRdVrydm7lvw71QrTVYmulsxqHdSIEUhZt7bqPqCd2zPujIPQ/xe0Nqja/4VitamSHX48dhVfjudvWnqkIDG3N8w7/ICJbV6w7c8N3IaySmpdO7Ult+/X0X9up6lfh0hhBCiNFT4HKD+/fsTHR3NzJkziYiIwM/Pj127duHm5gbA1atX0dz1ZlRycjIvv/wy169fx8bGhmbNmvHFF1/Qv39/IHs9mePHj7Nx40bi4uLw9PTkscceY968eRWyFlDaoQPZPT//UgwGDFoLVI0GbWYGqCr68BukHTqAzQN5t6wwWu+nyUdobJsW6fq7Tlzjp+PXAOjfoSGdmpi2NICp9Ho9U+esYNX6rQAMG/AEyxa8jk5nvuPaQgghKr8KT4AAxo8fz/jx4/P9bvfu3Uaf58+fz/z58wssy8bGhl9++aU0q1ci+ijj+U0qEN5vIO4/bCk0Doo278dgUPPs1r77XDjbQ68A0K9tfR5pXvweGb1eT3DIcSKiYnF3rUUnf19S09J5ftxcdgYGAzBn2hgmjRucM9FZCCGEqKwqRQJUnWld3Yw+G3RW3OrYOU8ClDuuKPN+Qq/EsPnQReJSMnKO2ei0pGZkD6s94etNj1Z1it2GHTv3MGXmcm6ER+ccc3etibW1FZevhud500sIIYSo7CQBKmPWHQLQunuijwzPngekKP9tdQ6gKGjdPbHuYDzp29R5P6FXYliz52ye43eSn/vq1KTXfXWLXf8dO/cw5MXp5F4tKiLqFgCODnZs/3KxTHYWQghRpVT4JOjqTtFqcZn57r8fcg0N/fvZZcY7KHct0GjqvB+DQWXzoYuFXv9KbGKe5MVUer2eKTOXF3q+rY017fyaFe8CQgghRAWRBKgc2PXshdvKDWjdjF/D17p74rZyA3Y9e+UcK8q8n7CoeKNhr/zEpWYSFhVfrHoHhxw3GvbKT0RULMEhx4tVvhBCCFFRZAisnNj17IVt9/+RFBLM6ejbuK//Cnv/TkY9P0Vd7ych1bRN30yNyy0iKrZU44QQQojKQnqAypGi1ebM9bHuEGCU/EDR1/txtDHtVXNT43Jzd7333mRFiRNCCCEqC0mAKonirPfTxNUJZ1tdoTE1bHU0cS3eZqed/H2pWaPgzeQUBep4utLJ37dY5QshhBAVRRKgSqC4+3xpNAoPNnYrNOa5Dg3RaIq3Ls8ff/5NfEJyvt/dmc+9cM6raHP1ZAkhhBCVnSRAFawk+3wlpmXyZ1j2Aoo6rfGjrGGrY0znZsXe8ys45BgDX3gbvV7P/e1a4uluXI6XhytfrJ1Pn8c7F6t8IYQQoiLJJOgKVtx9vgyqyqfB/xCfmoGHky1v/s+XK7eSjFaCLm7Pz5FjZ3lm2BRS09Lp0fUBvl7/LlqtJs9K0NLzI4QQoqqSBKgClWSfr9/P3OTUjdtYajWMetgHa50FPu7OJa7T6XOX6Dt4MolJKTwY4McXa+fn7Ov1cMc2JS5fCCGEqAxkCKwcqaoefXz2vllZMd8Xa94PwJXYJLYduQzAM+0b4FXDrlTqd+HSdXoPmMit2/G0b9OcLZ8uxMam/DeQFUIIIcqaJEDlRB+zjbSQxmSe6oOCHvWfwdnzfqzqFWneT1pmFh/vPYveoOJXtxYPNy2d3d2v34ik94DXiIy6RcvmDfnu80U42NuWStlCCCFEZSMJUDnQx2wj4/QAyLgBQEPrLSiKAQA1/QqG27tMLuvrkAtEJ6ZR086KoQFNSmXn9aiY2/Qe8BpXr0fQuEEdvv96aaGvvwshhBBVnSRAZUxV9WScnwRkb6iloKeh9Xd3RShkXHgdVdXfs6y/LkQScjEajQLPP+SDnVXJp3Ddjkukz8BJhF28hreXGz9sXoZb7ZolLlcIIYSozCQBKmOG+H05PT8AGjJQFBWDeucNKhXSr2fHFSIyIZWvQy4A0Ou+ujR2LXkPTWJSCk8NmcyJ0+dxrV2THzYtxdur8HWFhBBCiOpAEqAypmaEG31WFEjIqocBy0Lj7papN/Dx3rOkZxlo6uZEz1beJa5Xamo6/UdO41DoaWo6O/LDpqU0bljycoUQQoiqQBKgMqbojHeAN6hajidPApRC4+627chlrt1Kxs7KgpEPNS32+j53ZGZmMXTMDPbuP4KDvS3bvlxEy2YNS1SmEEIIUZVIAlTGNE4Pgs6LOwmPAR0pBs+7IhSwqpMdl4/j12L5/cxNAEZ0akoN25K9lq7X6xn16jx2BR3A2lrHlo0LaefXvERlCiGEEFWNJEBlTFG06BovufMp97cA6BotRlHyrqp8OyWdjfvDAOja3JPWdUo2OdlgMPDKlA/49vvfsbS04OuP3+XBB/xKVKYQQghRFUkCVA60Lv3QtdgEOk/jL6y80LXYhNalX55zDAaVT/48R3J6Ft417ejXtn6J6qCqKlNnr+CzTT+h0WjYsHIW3R/xL1GZQgghRFUlW2GUE61LP6xrPUl67J8QHI9lyx1Y1Xoo354fgJ9PXiMsMgErCw2jHm6GpbZkuer8Rev5aP0WAFYtnkrfJ7qUqDwhhBCiKpMeoHKkKFq0Tp0A0Dp1KjD5OR8Zz4/HrgIw0L8Rbo6mbZBakGWrvmLhso0ALH7nNQY/978SlSeEEEJUdZIAVTLJ6Zms//MfVBX8G9bmgUYlW5fn48+2M33+KgDmTBvDmBFPlUY1hRBCiCpNEqBKRFVVPtsfxu2UdGo7WDPQv1GJytv07S+89lb2BOzJrwzl9fFDSqOaQgghRJUnc4AqkT3nIjh27RZajcKoh5thbWn649Hr9QSHHCciKhZ311rcuh3PmNcWoKoqLz3/NLPeHF2GNRdCCCGqFkmAKonrt5PZ+vdFAPq1rU+9WvYmn7tj5x6mzFzOjfDoPN8Nee5/vD/n1VLZNFUIIYSoLiQBqgTSM/V8vPcsWQaVVl41eLS5571P+teOnXsY8uJ0VDX/73s8GoBGIyOdQgghxN3kb8ZK4JtDF4mIT8XJRsfwTk1N7q3R6/VMmbm8wOQHYNqcFej1995pXgghhDAnkgBVsL8vRRN8PhIFeP6hpjhYW97znDuCQ47nO+x1t+s3owgOOV7CWgohhBDViyRAFSgmMY0v/joPQM/W3vi4Oxfp/Iio2FKNE0IIIcyFJEAVRG8wsP7Pc6Rl6mlY24Fe99UtchnurrVKNU4IIYQwF5IAlSODQSUsMh6Azw9c4FJMIrY6LS885INWU/S3tDr5+xaa3CgK1PF0pZO/b7HrLIQQQlRH8hZYOQm9EsPmQxdJSknDz9aSw1dvAdCpsRu17K2LVaZGo8HTo3a+Q1x35lEvnPMqWm3+W24IIYQQ5kp6gMpB6JUY1uw5S1xKBipwPPW/NX4CT98k9EpMscr9fPNOjhw7i4WFFleXGkbfeXm48sXa+fR5vHNJqi6EEEJUS9IDVMYMBpXNhy7+9xkFvaoAKpDdTfPNoYvc510LTRGGwS5fvcmUmcsBmPXmaF4dM8BoJehO/r7S8yOEEEIUoFL0AK1cuZL69etjbW2Nv78/Bw8eLDD2u+++o3379jg7O2NnZ4efnx+ff/65UYyqqsycORMPDw9sbGzo1q0bYWFhZd2MfIVFxROXkvFf3VDQoKLlv8V7bqdkEBYVb3KZer2eFye+S1JyKh397+PVMQPQarU83LENz/XtxsMd20jyI4QQQhSiwhOgzZs3M2nSJGbNmsWRI0e477776NGjB1FRUfnG16xZk7fffpsDBw5w/PhxRo4cyciRI/nll19yYt5//30+/PBDVq9eTUhICHZ2dvTo0YO0tLTyalaOhNTMXEdUmtskk7uvJ29cwVas+4b9Icewt7NhzdK3JNkRQgghiqjCE6AlS5YwevRoRo4cSYsWLVi9ejW2trZ88skn+cZ36dKFfv360bx5cxo1asSECRPw9fVl3759QHbvz7Jly5g+fTp9+vTB19eXzz77jJs3b7J9+/ZybFk2RxvjhQ21qHhbpt8zriAnz1xgzsJ1ALw3+xUa1DN92wwhhBBCZKvQOUAZGRkcPnyYadOm5RzTaDR069aNAwcO3PN8VVX5/fffOXfuHAsXLgTg0qVLRERE0K1bt5w4Jycn/P39OXDgAAMGDMhTTnp6Ounp/yUlCQkJAGRmZpKZaXrPTH7q17Cllq0F8f8Og2lRURT+HQIzAOBsq6N+Ddt7Xis9PYNRr8wjIyOTnt0CGPRMjxLXr7zdqW9Vq3dpMff2g9wDc28/yD2Q9pdd+4tSZoUmQDExMej1etzc3IyOu7m5cfbs2QLPi4+Px8vLi/T0dLRaLR999BHdu3cHICIiIqeM3GXe+S63BQsWMGfOnDzHf/31V2xtbYvUpvzcbwk4GR/r6hRn9HnXrp/vWc6m7Xs5eeYCDvY2PNnNj59/vvc5lVVgYGBFV6FCmXv7Qe6Bubcf5B5I+0u//SkpKSbHVsm3wBwcHDh69ChJSUkEBQUxadIkGjZsSJcuXYpV3rRp05g0aVLO54SEBLy9vXnsscdwdHQslTofvxbLd0cuk5SSTlenOH6Pd8bB1op+bevj633vlZr/+vskP/32NwAfLZpKr54PlUq9yltmZiaBgYF0794dS0vT9z2rLsy9/SD3wNzbD3IPpP1l1/47IzimqNAEyMXFBa1WS2RkpNHxyMhI3N3dCzxPo9HQuHFjAPz8/Dhz5gwLFiygS5cuOedFRkbi4eFhVKafn1++5VlZWWFlZZXnuKWlZak9nHYN3WlT342zN2MJOxzMmK4taeZp2qvvSckpvPz6exgMBgY905N+vbuWSp0qUmne26rI3NsPcg/Mvf0g90DaX/rtL0p5FToJWqfT0a5dO4KCgnKOGQwGgoKCCAgIMLkcg8GQM4enQYMGuLu7G5WZkJBASEhIkcosCxqNQhO37LGwJm5OJq/7M23OSi5duYm3lxsfzJtQllUUQgghzEKFD4FNmjSJ4cOH0759e+6//36WLVtGcnIyI0eOBGDYsGF4eXmxYMECIHu+Tvv27WnUqBHp6ens3LmTzz//nFWrVgGgKAoTJ05k/vz5NGnShAYNGjBjxgw8PT3p27dvRTWz2H4JOsCGL78HYPXSt3BytL/HGUIIIYS4lwpPgPr37090dDQzZ84kIiICPz8/du3alTOJ+erVq2g0/3VUJScn8/LLL3P9+nVsbGxo1qwZX3zxBf3798+JmTJlCsnJybz44ovExcXx4IMPsmvXLqyti7fnVkWJuRXHy5PfA2DcqGfp3KltBddICCGEqB4qPAECGD9+POPHj8/3u927dxt9nj9/PvPnzy+0PEVRmDt3LnPnzi2tKpY7VVWZOHUxkVG38GlSj9lTx1R0lYQQQohqo8IXQhT52/zdr2z/aTcWFlrW/98MbGzyTtIWQgghRPFIAlQJXb8RyevTlwEw7bWR+LX2qdgKCSGEENWMJECVjMFg4KVJC4hPSKJDmxa8Pn5wRVdJCCGEqHYkAapkVm/4jt37DmNjbcXa5W9jYVEppmkJIYQQ1YokQJXI2bDLzHw3+3X+d2aMo0mjuhVcIyGEEKJ6kgSoksjMzOLFCe+QlpZBty73M3p434qukhBCCFFtSQJUSbz/4WccOXaWGs4OfLRoKopi2irRQgghhCg6SYAqgb9DT/P+8s8AWPLuJDw9aldwjYQQQojqTRKgCpaSmsboV+ej1+t5ps+jPNunW0VXSQghhKj2JAGqYDPfXU3YxWt4uLuw5J1JFV0dIYQQwixIAlSBft97iNWffAvAqsVTqVnDsYJrJIQQQpgHSYAqSFx8Ii+9lr3D/ejh/ejWxb+CaySEEEKYD0mAypFer2d/yHEARo6by82IaBo3qMP86WMruGZCCCGEeZEEqJzs2LmHFv7P8szwKYQcOcfufYcBGNL/CexsbSq4dkIIIYR5kQSoHOzYuYchL07nRng0qqryydeBOd/NWbiGHTv3VGDthBBCCPMjCVAZ0+v1TJm5HFXN/pyRmUVScprRQodvzvoQvV5fQTUUQgghzI8kQGUsOOQ4N8Kjcz4bDCqWFlp0ltmbnKoqXL8ZRfC/c4OEEEIIUfYkASpjEVGxeY717/MQGo1yzzghhBBClA1JgMqYu2sto89WOkt6PNLunnFCCCGEKDuSAJWxTv6+eHnU5s6UH41GMer9URSo4+lKJ3/fCqqhEEIIYX4kASpjWq2W9+dOACD3Bu93Pi+c8yparbacayaEEEKYL0mAykGfxzvzxdr5eLob7/Lu5eHKF2vn0+fxzhVUMyGEEMI8WVR0BcxFn8c706vHg+w7cJS42Ots3fg+Dwb4Sc+PEEIIUQGkB6gcabVaOv4716ejv68kP0IIIUQFkQRICCGEEGZHEiAhhBBCmB1JgIQQQghhdiQBEkIIIYTZkQRICCGEEGZHEiAhhBBCmB1JgIQQQghhdiQBEkIIIYTZkQRICCGEEGZHtsLIh6qqACQkJJR62ZmZmaSkpJCQkIClpWWpl1/ZSfvNu/0g98Dc2w9yD6T9Zdf+O39v3/l7vDCSAOUjMTERAG9v7wquiRBCCCGKKjExEScnp0JjFNWUNMnMGAwGbt68iYODA4qilGrZCQkJeHt7c+3aNRwdHUu17KpA2m/e7Qe5B+befpB7IO0vu/arqkpiYiKenp5oNIXP8pEeoHxoNBrq1KlTptdwdHQ0yx/+HdJ+824/yD0w9/aD3ANpf9m0/149P3fIJGghhBBCmB1JgIQQQghhdiQBKmdWVlbMmjULKyuriq5KhZD2m3f7Qe6Bubcf5B5I+ytH+2UStBBCCCHMjvQACSGEEMLsSAIkhBBCCLMjCZAQQgghzI4kQEIIIYQwO5IAlaK9e/fSu3dvPD09URSF7du3Fxq/e/duFEXJ8yciIqJ8KlzKFixYQIcOHXBwcMDV1ZW+ffty7ty5e563ZcsWmjVrhrW1Na1bt2bnzp3lUNvSV5z2f/rpp3mev7W1dTnVuPStWrUKX1/fnAXOAgIC+Pnnnws9p7o8fyh6+6vb88/tvffeQ1EUJk6cWGhcdfoN5GbKPahuv4PZs2fnaU+zZs0KPacifgOSAJWi5ORk7rvvPlauXFmk886dO0d4eHjOH1dX1zKqYdnas2cP48aN46+//iIwMJDMzEwee+wxkpOTCzxn//79DBw4kBdeeIHQ0FD69u1L3759OXnyZDnWvHQUp/2QvRrq3c//ypUr5VTj0lenTh3ee+89Dh8+zN9//03Xrl3p06cPp06dyje+Oj1/KHr7oXo9/7sdOnSINWvW4OvrW2hcdfsN3M3UewDV73fQsmVLo/bs27evwNgK+w2ookwA6rZt2wqN+eOPP1RAvX37drnUqbxFRUWpgLpnz54CY5577jn1iSeeMDrm7++vjhkzpqyrV+ZMaf+GDRtUJyen8qtUBahRo4b68ccf5/tddX7+dxTW/ur6/BMTE9UmTZqogYGBaufOndUJEyYUGFtdfwNFuQfV7Xcwa9Ys9b777jM5vqJ+A9IDVAn4+fnh4eFB9+7dCQ4OrujqlJr4+HgAatasWWDMgQMH6Natm9GxHj16cODAgTKtW3kwpf0ASUlJ1KtXD29v73v2FlQler2eTZs2kZycTEBAQL4x1fn5m9J+qJ7Pf9y4cTzxxBN5nm1+qutvoCj3AKrf7yAsLAxPT08aNmzI4MGDuXr1aoGxFfUbkM1QK5CHhwerV6+mffv2pKen8/HHH9OlSxdCQkJo27ZtRVevRAwGAxMnTqRTp060atWqwLiIiAjc3NyMjrm5uVXZeVB3mNp+Hx8fPvnkE3x9fYmPj2fRokV07NiRU6dOlfmGvGXlxIkTBAQEkJaWhr29Pdu2baNFixb5xlbH51+U9lfH579p0yaOHDnCoUOHTIqvjr+Bot6D6vY78Pf359NPP8XHx4fw8HDmzJnDQw89xMmTJ3FwcMgTX1G/AUmAKpCPjw8+Pj45nzt27MiFCxdYunQpn3/+eQXWrOTGjRvHyZMnCx33rc5MbX9AQIBR70DHjh1p3rw5a9asYd68eWVdzTLh4+PD0aNHiY+PZ+vWrQwfPpw9e/YUmARUN0Vpf3V7/teuXWPChAkEBgZW6Um8JVGce1Ddfgf/+9//cv7Z19cXf39/6tWrxzfffMMLL7xQgTUzJglQJXP//fdX+aRh/Pjx/Pjjj+zdu/ee/+/F3d2dyMhIo2ORkZG4u7uXZRXLVFHan5ulpSVt2rTh/PnzZVS7sqfT6WjcuDEA7dq149ChQyxfvpw1a9bkia2Oz78o7c+tqj//w4cPExUVZdSDrdfr2bt3LytWrCA9PR2tVmt0TnX7DRTnHuRW1X8HuTk7O9O0adMC21NRvwGZA1TJHD16FA8Pj4quRrGoqsr48ePZtm0bv//+Ow0aNLjnOQEBAQQFBRkdCwwMLHTORGVVnPbnptfrOXHiRJX9DeTHYDCQnp6e73fV6fkXpLD251bVn/+jjz7KiRMnOHr0aM6f9u3bM3jwYI4ePZrvX/zV7TdQnHuQW1X/HeSWlJTEhQsXCmxPhf0GynSKtZlJTExUQ0ND1dDQUBVQlyxZooaGhqpXrlxRVVVVp06dqg4dOjQnfunSper27dvVsLAw9cSJE+qECRNUjUaj/vbbbxXVhBIZO3as6uTkpO7evVsNDw/P+ZOSkpITM3ToUHXq1Kk5n4ODg1ULCwt10aJF6pkzZ9RZs2aplpaW6okTJyqiCSVSnPbPmTNH/eWXX9QLFy6ohw8fVgcMGKBaW1urp06dqogmlNjUqVPVPXv2qJcuXVKPHz+uTp06VVUURf31119VVa3ez19Vi97+6vb885P7Dajq/hvIz73uQXX7Hbz++uvq7t271UuXLqnBwcFqt27dVBcXFzUqKkpV1crzG5AEqBTdea0995/hw4erqqqqw4cPVzt37pwTv3DhQrVRo0aqtbW1WrNmTbVLly7q77//XjGVLwX5tR1QN2zYkBPTuXPnnPtxxzfffKM2bdpU1el0asuWLdWffvqpfCteSorT/okTJ6p169ZVdTqd6ubmpj7++OPqkSNHyr/ypeT5559X69Wrp+p0OrV27drqo48+mvOXv6pW7+evqkVvf3V7/vnJ/Zd/df8N5Ode96C6/Q769++venh4qDqdTvXy8lL79++vnj9/Puf7yvIbUFRVVcu2j0kIIYQQonKROUBCCCGEMDuSAAkhhBDC7EgCJIQQQgizIwmQEEIIIcyOJEBCCCGEMDuSAAkhhBDC7EgCJIQQQgizIwmQEEIIIcyOJEBCiAp1+fJlFEXh6NGjlabs+vXrs2zZslKrx+7du1EUhbi4uEpRjhBCEiAhzE50dDRjx46lbt26WFlZ4e7uTo8ePQgODs6JURSF7du3V1wlq5mOHTsSHh6Ok5OTyed06dKFiRMnlrgcIUT+LCq6AkKI8vX000+TkZHBxo0badiwIZGRkQQFBREbG1vRVSu2jIwMdDpdRVejQDqdDnd390pTjhBCeoCEMCtxcXH8+eefLFy4kEceeYR69epx//33M23aNJ588kkge/gHoF+/fiiKkvP5woUL9OnTBzc3N+zt7enQoQO//fabUfn169fn3Xff5fnnn8fBwYG6deuydu1ao5iDBw/Spk0brK2tad++PaGhoUbf6/V6XnjhBRo0aICNjQ0+Pj4sX77cKGbEiBH07duXd955B09PT3x8fEwqOz9RUVH07t0bGxsbGjRowJdffpnvfRs1ahS1a9fG0dGRrl27cuzYMQD++ecfFEXh7NmzRucsXbqURo0aAXmHrmJjYxk4cCBeXl7Y2trSunVrvv76a6P27dmzh+XLl6MoCoqicPny5XyHwL799ltatmyJlZUV9evXZ/HixUb1MOWZCGGOJAESwozY29tjb2/P9u3bSU9Pzzfm0KFDAGzYsIHw8PCcz0lJSTz++OMEBQURGhpKz5496d27N1evXjU6f/HixTnJx8svv8zYsWM5d+5cThm9evWiRYsWHD58mNmzZzN58mSj8w0GA3Xq1GHLli2cPn2amTNn8tZbb/HNN98YxQUFBXHu3DkCAwP58ccfTSo7PyNGjODatWv88ccfbN26lY8++oioqCijmGeffZaoqCh+/vlnDh8+TNu2bXn00Ue5desWTZs2pX379nkSpy+//JJBgwble820tDTatWvHTz/9xMmTJ3nxxRcZOnQoBw8eBGD58uUEBAQwevRowsPDCQ8Px9vbO085hw8f5rnnnmPAgAGcOHGC2bNnM2PGDD799FOTn4kQZqvM95sXQlQqW7duVWvUqKFaW1urHTt2VKdNm6YeO3bMKAZQt23bds+yWrZsqf7f//1fzud69eqpQ4YMyflsMBhUV1dXddWqVaqqquqaNWvUWrVqqampqTkxq1atUgE1NDS0wOuMGzdOffrpp3M+Dx8+XHVzc1PT09NzjhWn7HPnzqmAevDgwZxjZ86cUQF16dKlqqqq6p9//qk6OjqqaWlpRuc2atRIXbNmjaqqqrp06VK1UaNGeco9c+aMqqqq+scff6iAevv27QLb+MQTT6ivv/56zufOnTurEyZMMIrJXc6gQYPU7t27G8W88cYbaosWLXI+3+uZCGGupAdICDPz9NNPc/PmTb7//nt69uzJ7t27adu2bZ5eg9ySkpKYPHkyzZs3x9nZGXt7e86cOZOnB8jX1zfnnxVFwd3dPadH5cyZM/j6+mJtbZ0TExAQkOdaK1eupF27dtSuXRt7e3vWrl2b5zqtW7c2mvdjatl3O3PmDBYWFrRr1y7nWLNmzXB2ds75fOzYMZKSkqhVq1ZOD5q9vT2XLl3iwoULAAwYMIDLly/z119/Adm9P23btqVZs2b5Xlev1zNv3jxat25NzZo1sbe355dffsnTxns5c+YMnTp1MjrWqVMnwsLC0Ov1OccKeyZCmCuZBC2EGbK2tqZ79+50796dGTNmMGrUKGbNmsWIESMKPGfy5MkEBgayaNEiGjdujI2NDc888wwZGRlGcZaWlkafFUXBYDCYXLdNmzYxefJkFi9eTEBAAA4ODnzwwQeEhIQYxdnZ2ZlcZkkkJSXh4eHB7t2783x3J1Fyd3ena9eufPXVVzzwwAN89dVXjB07tsAyP/jgA5YvX86yZcto3bo1dnZ2TJw4Mc+9LC0lfSZCVEeSAAkhaNGihdFr75aWlkY9CADBwcGMGDGCfv36AdmJweXLl4t0nebNm/P555+TlpaW01Nzp9fk7ut07NiRl19+OefYnZ6WkpadW7NmzcjKyuLw4cN06NABgHPnzhlNMm7bti0RERFYWFjkTAjPz+DBg5kyZQoDBw7k4sWLDBgwoMDY4OBg+vTpw5AhQ4DseU///PMPLVq0yInR6XR5nkF+bb57+YI7ZTdt2hStVlvouUKYOxkCE8KMxMbG0rVrV7744guOHz/OpUuX2LJlC++//z59+vTJiatfvz5BQUFERERw+/ZtAJo0acJ3333H0aNHOXbsGIMGDSpyL8KgQYNQFIXRo0dz+vRpdu7cyaJFi4ximjRpwt9//80vv/zCP//8w4wZM3ImYpe07Nx8fHzo2bMnY8aMISQkhMOHDzNq1ChsbGxyYrp160ZAQAB9+/bl119/5fLly+zfv5+3336bv//+OyfuqaeeIjExkbFjx/LII4/g6elZ4HWbNGlCYGAg+/fv58yZM4wZM4bIyEijmPr16xMSEsLly5eJiYnJ916//vrrBAUFMW/ePP755x82btzIihUrTJr8LYS5kwRICDNib2+Pv78/S5cu5eGHH6ZVq1bMmDGD0aNHs2LFipy4xYsXExgYiLe3N23atAFgyZIl1KhRg44dO9K7d2969OhB27Zti3z9H374gRMnTtCmTRvefvttFi5caBQzZswYnnrqKfr374+/vz+xsbFGvUElKTs/GzZswNPTk86dO/PUU0/x4osv4urqmvO9oijs3LmThx9+mJEjR9K0aVMGDBjAlStXcHNzy4lzcHCgd+/eHDt2jMGDBxd6zenTp9O2bVt69OhBly5dcHd3p2/fvkYxkydPRqvV0qJFC2rXrp3v/KC2bdvyzTffsGnTJlq1asXMmTOZO3duoUOZQohsiqqqakVXQgghhBCiPEkPkBBCCCHMjiRAQgghhDA7kgAJIYQQwuxIAiSEEEIIsyMJkBBCCCHMjiRAQgghhDA7kgAJIYQQwuxIAiSEEEIIsyMJkBBCCCHMjiRAQgghhDA7kgAJIYQQwuz8P38R8v0S7SJMAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "colors = [\"#0b1a3c\", \"#67a1c3\", \"#f6c105\", \"#dd2113\"]\n", "fig, axs = plt.subplots()\n", "\n", "for column, color in zip(returns.columns, colors):\n", " axs.scatter(x=returns.index, y=returns[column], marker=\"o\", color=color)\n", " axs.plot(\n", " returns.index,\n", " returns[column],\n", " label=f\"strategy {column}\",\n", " color=color,\n", " )\n", "axs.set_xlabel(\"Standard deviation\")\n", "axs.set_ylabel(\"Expected return\")\n", "axs.legend()\n", "axs.grid()\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "2ec2b12e", "metadata": {}, "source": [ "## Takeaways\n", "\n", "* Individual bounds on long and short positions can be modeled via variable bounds.\n", "* Bounds on the total short ratio can be modeled using the negative parts of the positions.\n", "* Including leverage and short-selling, the efficient frontier shifts significantly towards the return direction.\n", "* Different strategies can be tested by modifying the right-hand sides; there is no need to rebuild the model." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 5 }